Scalable Heuristic Algorithms for the Parallel Execution of Data Flow Acyclic Digraphs

Data flow acyclic directed graphs (digraphs) can be applied to accurately describe the data dependency for a wide range of grid-based scientific computing applications ranging from numerical algebra to realistic applications of radiation or neutron transport. The parallel computing of these applicat...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:SIAM journal on scientific computing Ročník 31; číslo 5; s. 3626 - 3642
Hlavní autori: Mo, Zeyao, Zhang, Aiqing, Wittum, Gabriel
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Philadelphia Society for Industrial and Applied Mathematics 01.01.2009
Predmet:
ISSN:1064-8275, 1095-7197
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Data flow acyclic directed graphs (digraphs) can be applied to accurately describe the data dependency for a wide range of grid-based scientific computing applications ranging from numerical algebra to realistic applications of radiation or neutron transport. The parallel computing of these applications is equivalent to the parallel execution of digraphs. This paper presents a framework of scalable heuristic algorithms for the parallel execution of digraphs. This framework consists of three components: the heuristic partitioning method of a digraph, the parallel sweeping algorithm for a partitioned digraph, and the heuristic strategy for vertex scheduling and vertex packing. Evaluation rules of heuristic algorithms are presented for better theoretical understanding and performance optimization. Parallel benchmarks for the multigroup neutron or radiation $S_n$ transport using processors from 100 to 2048 on two massively parallel machines show that these heuristic algorithms scale well.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-2
content type line 23
ISSN:1064-8275
1095-7197
DOI:10.1137/050634554