Fast Encoding Algorithms for Reed-Solomon Codes With Between Four and Seven Parity Symbols
This article describes a fast Reed-Solomon encoding algorithm with four and seven parity symbols in between. First, we show that the syndrome of Reed-Solomon codes can be computed via the Reed-Muller transform. Based on this result, the fast encoding algorithm is then derived. Analysis shows that th...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on computers Jg. 69; H. 5; S. 699 - 705 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.05.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0018-9340, 1557-9956 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | This article describes a fast Reed-Solomon encoding algorithm with four and seven parity symbols in between. First, we show that the syndrome of Reed-Solomon codes can be computed via the Reed-Muller transform. Based on this result, the fast encoding algorithm is then derived. Analysis shows that the proposed approach asymptotically requires 3 XORs per data bit, representing an improvement over previous algorithms. The simulation demonstrates that the performance of the proposed approach improves with the increase of code length and is superior to other methods. In particular, when the parity number is 5, the proposed approach is about two times faster than other cutting-edge methods. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0018-9340 1557-9956 |
| DOI: | 10.1109/TC.2019.2963827 |