Recent Developments and Novel Applications of Laser Shock Peening: A Review

By inducing work hardening and beneficial compressive residual stresses in near‐surface regions, laser shock peening (LSP) improves the fatigue performance of many metallic components. In recent years, LSP has found many new applications in emerging fields: additive manufacturing, ceramics, and meta...

Full description

Saved in:
Bibliographic Details
Published in:Advanced engineering materials Vol. 23; no. 7
Main Authors: Zhang, Chaoyi, Dong, Yalin, Ye, Chang
Format: Journal Article
Language:English
Published: 01.07.2021
Subjects:
ISSN:1438-1656, 1527-2648
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract By inducing work hardening and beneficial compressive residual stresses in near‐surface regions, laser shock peening (LSP) improves the fatigue performance of many metallic components. In recent years, LSP has found many new applications in emerging fields: additive manufacturing, ceramics, and metallic glasses. In addition, innovative process development based on LSP has been reported, which includes warm LSP, cryogenic LSP, electropulsing‐assisted LSP, laser peening without coating, femotosecond LSP, and laser peen forming. Herein, a comprehensive review of the LSP process with a focus on the novel applications and innovative process development is aimed for. The history of LSP with key events is briefly reviewed. The fundamental mechanisms of LSP, including the generation of shockwaves by a high‐energy pulsed laser, the generation of compressive residual stresses by the shockwave, and its effect on crack propagation, and how LSP induces grain refinement are also discussed. The effects of compressive residual stresses and grain refinement on the mechanical properties of metallic materials are reviewed. Recent developments in LSP, such as innovative process development based on LSP and its novel applications, are discussed. Finally, the current challenges the LSP technology faces and its future directions are also discussed. Herein, the recent developments of laser shock peening (LSP), including its applications in emerging fields, e.g., additive manufacturing and innovative process development, including warm LSP, femtosecond LSP, and electropulsing‐assisted LSP, among others, are reviewed. The current challenges the LSP technology faces and its future directions are also discussed.
AbstractList By inducing work hardening and beneficial compressive residual stresses in near‐surface regions, laser shock peening (LSP) improves the fatigue performance of many metallic components. In recent years, LSP has found many new applications in emerging fields: additive manufacturing, ceramics, and metallic glasses. In addition, innovative process development based on LSP has been reported, which includes warm LSP, cryogenic LSP, electropulsing‐assisted LSP, laser peening without coating, femotosecond LSP, and laser peen forming. Herein, a comprehensive review of the LSP process with a focus on the novel applications and innovative process development is aimed for. The history of LSP with key events is briefly reviewed. The fundamental mechanisms of LSP, including the generation of shockwaves by a high‐energy pulsed laser, the generation of compressive residual stresses by the shockwave, and its effect on crack propagation, and how LSP induces grain refinement are also discussed. The effects of compressive residual stresses and grain refinement on the mechanical properties of metallic materials are reviewed. Recent developments in LSP, such as innovative process development based on LSP and its novel applications, are discussed. Finally, the current challenges the LSP technology faces and its future directions are also discussed. Herein, the recent developments of laser shock peening (LSP), including its applications in emerging fields, e.g., additive manufacturing and innovative process development, including warm LSP, femtosecond LSP, and electropulsing‐assisted LSP, among others, are reviewed. The current challenges the LSP technology faces and its future directions are also discussed.
Author Dong, Yalin
Zhang, Chaoyi
Ye, Chang
Author_xml – sequence: 1
  givenname: Chaoyi
  surname: Zhang
  fullname: Zhang, Chaoyi
  organization: Huazhong University of Science and Technology
– sequence: 2
  givenname: Yalin
  surname: Dong
  fullname: Dong, Yalin
  organization: The University of Akron
– sequence: 3
  givenname: Chang
  orcidid: 0000-0002-2546-4464
  surname: Ye
  fullname: Ye, Chang
  email: cye@hust.edu.cn
  organization: Huazhong University of Science and Technology
BookMark eNqFkF1LwzAUhoNMcJveep0_0JmTNEnnXdnmB9YPpl6XND3VaNeWpmzs39s5URDEq_NyeJ_D4RmRQVVXSMgpsAkwxs9MjqsJZ5wx4KAOyBAk1wFXYTTocyiiAJRUR2Tk_VvfAQZiSG6WaLHq6BzXWNbNqs-emiqnd3W_oHHTlM6aztWVp3VBE-OxpY-vtX2nD4iVq17OaUyXuHa4OSaHhSk9nnzNMXm-WDzNroLk_vJ6FieB5dFUBZFi3IpcywIykxkJoS60kUzrTEjIATMdZkJZy6XSwloAo0SBmREKcsmNGJNwf9e2tfctFql13eePXWtcmQJLd0LSnZD0W0iPTX5hTetWpt3-DUz3wMaVuP2nncbzxe0P-wFQ4HUS
CitedBy_id crossref_primary_10_1007_s11665_023_08406_2
crossref_primary_10_1016_j_apsusc_2022_156032
crossref_primary_10_3390_nano12091415
crossref_primary_10_1016_j_tafmec_2022_103642
crossref_primary_10_3390_met12010026
crossref_primary_10_1016_j_surfcoat_2025_132076
crossref_primary_10_1016_j_apsusc_2023_158697
crossref_primary_10_1016_j_wear_2024_205349
crossref_primary_10_1080_02670844_2023_2206186
crossref_primary_10_2351_7_0001411
crossref_primary_10_1016_j_optlastec_2024_111832
crossref_primary_10_3390_mi16090973
crossref_primary_10_1002_adem_202201451
crossref_primary_10_1002_adem_202200365
crossref_primary_10_1016_j_surfcoat_2023_129697
crossref_primary_10_1016_j_tws_2024_112326
crossref_primary_10_1088_1742_6596_3061_1_012020
crossref_primary_10_1016_j_euromechsol_2023_105008
crossref_primary_10_1007_s00170_024_13872_6
crossref_primary_10_1016_j_cossms_2023_101090
crossref_primary_10_1007_s00170_024_13126_5
crossref_primary_10_1016_j_apsusc_2024_159939
crossref_primary_10_1016_j_ijfatigue_2022_107033
crossref_primary_10_1016_j_jmapro_2025_06_092
crossref_primary_10_3390_coatings14030315
crossref_primary_10_1016_j_ijmachtools_2023_104029
crossref_primary_10_3390_jmmp9080273
crossref_primary_10_1016_j_optlastec_2023_109505
crossref_primary_10_1016_j_surfin_2023_103757
crossref_primary_10_1016_j_optlastec_2024_111325
crossref_primary_10_1002_adem_202201066
crossref_primary_10_1016_j_tafmec_2024_104281
crossref_primary_10_1007_s12540_024_01824_4
crossref_primary_10_3390_met13020397
crossref_primary_10_1016_j_optlaseng_2024_108298
crossref_primary_10_1016_j_optlastec_2023_110330
crossref_primary_10_1016_j_mtcomm_2024_108740
crossref_primary_10_1177_14644207231206067
crossref_primary_10_1016_j_engfailanal_2024_109150
crossref_primary_10_1016_j_matchar_2024_113706
crossref_primary_10_1007_s12541_023_00870_z
crossref_primary_10_1016_j_jmapro_2022_12_011
crossref_primary_10_3390_ma16113944
crossref_primary_10_1038_s41598_021_02895_8
crossref_primary_10_1016_j_vacuum_2025_114371
crossref_primary_10_1016_j_surfcoat_2025_132252
crossref_primary_10_3390_mi15111296
crossref_primary_10_1016_j_matchar_2023_113387
crossref_primary_10_1007_s11665_022_06618_6
crossref_primary_10_1016_j_optlastec_2022_108083
crossref_primary_10_1007_s41403_024_00472_9
crossref_primary_10_1088_2053_1591_ac21e8
crossref_primary_10_1016_j_mtcomm_2023_106699
crossref_primary_10_1111_jace_18222
crossref_primary_10_1016_j_triboint_2024_110480
crossref_primary_10_3389_fmats_2022_848980
crossref_primary_10_1016_S1003_6326_25_66788_4
crossref_primary_10_1007_s40042_024_01129_0
crossref_primary_10_1007_s11182_024_03267_1
crossref_primary_10_1007_s11665_023_08051_9
crossref_primary_10_1016_j_corsci_2022_110935
crossref_primary_10_1007_s11665_023_08644_4
crossref_primary_10_1016_j_matchar_2021_111571
crossref_primary_10_1016_j_surfcoat_2023_129725
crossref_primary_10_1007_s11665_024_10286_z
crossref_primary_10_1016_j_engfailanal_2022_106937
crossref_primary_10_3390_ma15196693
crossref_primary_10_1007_s11665_023_08236_2
crossref_primary_10_1016_S1003_6326_24_66557_X
crossref_primary_10_3390_met15080921
crossref_primary_10_1088_1402_4896_ad385a
crossref_primary_10_1016_j_jmapro_2024_12_032
crossref_primary_10_1016_j_msea_2024_146583
crossref_primary_10_1016_j_msea_2023_145699
crossref_primary_10_1016_j_optlastec_2023_110301
crossref_primary_10_1111_ffe_14542
crossref_primary_10_1016_j_ijhydene_2025_02_422
crossref_primary_10_1016_j_engfailanal_2023_107846
crossref_primary_10_1080_14786435_2023_2246019
crossref_primary_10_1016_j_matchar_2023_112827
crossref_primary_10_1007_s00170_023_11828_w
crossref_primary_10_1016_j_matdes_2024_113555
crossref_primary_10_1007_s11771_025_6003_6
crossref_primary_10_1063_5_0126075
crossref_primary_10_3390_ma16206769
crossref_primary_10_1016_j_diamond_2024_111468
crossref_primary_10_1016_j_surfin_2023_103284
crossref_primary_10_1007_s12540_023_01517_4
crossref_primary_10_1007_s11665_024_10418_5
crossref_primary_10_3390_ma17040909
crossref_primary_10_1016_j_surfcoat_2024_131470
crossref_primary_10_3390_coatings12101444
crossref_primary_10_1088_1742_6596_2981_1_012011
crossref_primary_10_1007_s11665_023_08356_9
crossref_primary_10_1007_s12540_022_01334_1
crossref_primary_10_2478_adms_2023_0022
crossref_primary_10_1177_02670844241284498
crossref_primary_10_1016_j_ceramint_2025_01_483
crossref_primary_10_1016_j_ijmecsci_2024_108968
crossref_primary_10_3390_ma17143484
crossref_primary_10_1016_j_surfcoat_2024_131353
crossref_primary_10_1177_09544062241307455
crossref_primary_10_1002_adem_202401779
crossref_primary_10_3390_met13071268
crossref_primary_10_1016_j_optlastec_2023_110094
crossref_primary_10_1016_j_jmatprotec_2025_118823
crossref_primary_10_1016_j_msea_2023_145317
crossref_primary_10_1016_j_jmrt_2025_05_168
crossref_primary_10_1007_s11665_023_08900_7
crossref_primary_10_1016_j_aei_2025_103350
crossref_primary_10_1007_s00170_024_14412_y
crossref_primary_10_1016_j_ijmachtools_2022_103917
crossref_primary_10_1016_j_jmapro_2025_06_026
crossref_primary_10_1016_j_jnucmat_2023_154555
crossref_primary_10_1016_j_optlastec_2025_112548
crossref_primary_10_1007_s00170_023_10954_9
crossref_primary_10_1016_j_ymssp_2024_111912
crossref_primary_10_1016_j_vacuum_2022_111740
crossref_primary_10_1016_j_surfcoat_2024_131567
crossref_primary_10_1002_admi_202101232
crossref_primary_10_1016_j_optlastec_2024_111132
crossref_primary_10_1016_j_ijfatigue_2025_108862
crossref_primary_10_1016_j_ijmecsci_2025_110408
crossref_primary_10_1016_j_jnucmat_2024_155080
crossref_primary_10_1177_14644207241307815
crossref_primary_10_1007_s40430_025_05819_z
crossref_primary_10_3390_app112210986
crossref_primary_10_1007_s12289_022_01686_4
crossref_primary_10_1016_j_ijmachtools_2023_104061
crossref_primary_10_1108_RPJ_11_2022_0395
crossref_primary_10_1016_j_engfailanal_2022_106625
crossref_primary_10_1016_j_optlastec_2024_111700
crossref_primary_10_1111_jace_19408
crossref_primary_10_3390_coatings13091524
crossref_primary_10_1016_j_ijleo_2023_170654
crossref_primary_10_1002_adem_202300615
crossref_primary_10_1007_s00170_025_15474_2
crossref_primary_10_1016_j_jmapro_2023_11_017
crossref_primary_10_1016_j_jmatprotec_2022_117851
crossref_primary_10_1016_j_msea_2023_145271
crossref_primary_10_1016_j_vacuum_2023_111932
crossref_primary_10_1016_j_msea_2024_146388
Cites_doi 10.1016/j.surfcoat.2019.04.060
10.1016/j.msec.2017.03.003
10.1016/j.matdes.2017.08.066
10.1016/j.ijfatigue.2015.04.018
10.1063/1.3651508
10.1016/j.actamat.2010.10.032
10.1007/s00170-013-5032-8
10.1016/j.surfcoat.2021.126848
10.1016/j.corsci.2014.10.045
10.1016/j.ijfatigue.2017.04.016
10.4028/www.scientific.net/KEM.464.588
10.1063/1.4881555
10.1063/1.1915537
10.1016/j.surfcoat.2018.01.043
10.1016/j.mfglet.2019.11.003
10.1016/S0921-5093(98)00793-X
10.1016/j.optlastec.2015.04.009
10.1016/j.optlaseng.2016.05.014
10.1016/j.surfcoat.2018.06.020
10.1016/j.jmatprotec.2020.116588
10.2961/jlmn.2010.02.0014
10.1016/j.jallcom.2018.06.030
10.1063/1.366113
10.1063/1.4742997
10.3390/ma7127925
10.1016/j.msea.2010.12.058
10.1007/s40799-018-0291-9
10.1088/1361-6463/abc040
10.1016/j.surfcoat.2013.06.003
10.1007/s00170-019-03868-y
10.1016/j.addma.2018.09.013
10.1016/j.msea.2010.11.045
10.2351/1.5012962
10.1016/j.ijfatigue.2013.10.001
10.1016/j.ijfatigue.2020.105596
10.1016/j.matdes.2019.107626
10.1016/j.msea.2018.09.016
10.1016/j.msea.2017.08.050
10.1016/j.jmatprotec.2015.02.030
10.1111/j.1460-2695.2004.00763.x
10.1016/j.surfcoat.2018.02.009
10.1016/j.optlastec.2019.105763
10.1016/j.actamat.2012.06.024
10.1016/j.optlastec.2020.106409
10.1016/j.actamat.2011.07.070
10.1016/j.jmatprotec.2018.11.024
10.2320/matertrans.M2016150
10.1016/j.msea.2014.05.003
10.2351/1.4967013
10.1111/ffe.13226
10.1016/j.engfailanal.2018.04.045
10.1016/j.msea.2020.139199
10.1016/j.jmatprotec.2015.06.026
10.1063/1.1653116
10.1016/S0142-1123(02)00022-1
10.1108/17579861111162923
10.1016/j.triboint.2009.04.005
10.1016/j.optlastec.2015.06.029
10.1115/1.2812381
10.1063/1.346783
10.1016/j.jallcom.2019.06.156
10.1016/j.ijfatigue.2015.08.024
10.1016/j.msea.2010.10.020
10.1016/j.optlastec.2015.09.014
10.1016/j.jmatprotec.2010.08.025
10.1016/j.ijfatigue.2017.04.002
10.1016/j.surfcoat.2012.01.050
10.1016/j.optlastec.2017.03.017
10.1361/105994903770342944
10.1016/j.addma.2020.101112
10.1016/j.triboint.2009.04.014
10.1007/s00170-018-3033-3
10.1016/j.ijmachtools.2019.103475
10.1016/S0921-5093(00)01277-6
10.1364/AO.57.002467
10.1016/j.matdes.2015.10.128
10.1016/j.actamat.2017.01.050
10.1063/1.354710
10.3390/met9070746
10.1111/jace.15742
10.1016/j.corsci.2012.03.044
10.1016/j.jmatprotec.2012.01.023
10.1016/j.optlastec.2018.06.032
10.1016/j.actamat.2014.09.032
10.1016/j.matdes.2011.10.053
10.1016/j.jeurceramsoc.2017.03.005
10.1016/j.jmst.2020.03.059
10.1016/j.ijfatigue.2012.03.008
10.1016/S1359-6462(03)00143-X
10.2961/jlmn.2012.02.0006
10.1016/j.jallcom.2020.153707
10.1016/j.ijfatigue.2010.12.016
10.1016/j.surfcoat.2018.02.083
10.1016/j.jallcom.2018.01.070
10.1016/j.msea.2004.07.025
10.1016/j.surfcoat.2020.126670
10.1016/j.matdes.2013.07.009
10.1016/j.optlastec.2016.02.007
10.1016/j.mfglet.2020.11.006
10.1016/j.optlastec.2017.03.003
10.1179/1743284712Y.0000000166
10.1016/j.ijfatigue.2006.10.005
10.1063/1.1661837
10.1080/14786435.2011.645899
10.1016/j.jmatprotec.2014.12.028
10.1016/j.jallcom.2016.04.179
10.1016/j.optlastec.2012.06.019
10.1016/j.optlastec.2017.12.044
10.2961/jlmn.2009.01.0007
10.1016/j.optlastec.2019.105784
10.1007/BF02677273
10.1016/S0168-583X(96)00551-4
10.1016/j.actamat.2010.03.026
10.1016/j.optlastec.2016.07.003
10.1016/j.matdes.2013.08.104
10.1016/j.surfcoat.2016.12.093
10.1016/j.surfcoat.2016.02.038
10.1007/s11665-018-3172-6
10.1111/jace.14630
10.1016/S0921-5093(03)00069-8
10.1016/j.msea.2015.08.084
10.1016/j.msea.2010.01.076
10.2961/jlmn.2006.03.0002
10.1016/j.matdes.2017.05.083
10.1016/j.msea.2005.11.017
10.1063/1.4932142
10.1016/j.apsusc.2014.06.056
10.1016/j.mtla.2019.100265
10.1016/j.actamat.2012.12.016
10.1016/j.ijmecsci.2018.10.040
10.1115/1.4034891
10.1016/j.actamat.2010.06.010
10.1016/j.msea.2011.12.072
10.1016/j.optlastec.2016.03.028
10.3390/met9060626
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
DOI 10.1002/adem.202001216
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1527-2648
EndPage n/a
ExternalDocumentID 10_1002_adem_202001216
ADEM202001216
Genre article
GroupedDBID -~X
05W
0R~
1L6
1OC
23M
31~
33P
3SF
3WU
4.4
50Y
52U
5GY
5VS
66C
6P2
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F5P
FEDTE
G-S
GNP
GODZA
HGLYW
HVGLF
HZ~
IX1
JPC
KQQ
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OIG
P2P
P2W
P4E
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
TUS
W99
WBKPD
WIH
WIK
WOHZO
WXSBR
WYJ
XPP
XV2
ZZTAW
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
ID FETCH-LOGICAL-c2896-8602c3d75f1baba5147f7a5077b351d1eb74b36cc25673cc11a63feba361d52a3
IEDL.DBID DRFUL
ISICitedReferencesCount 177
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000644895700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1438-1656
IngestDate Thu Oct 09 00:33:23 EDT 2025
Tue Nov 18 22:17:53 EST 2025
Wed Jan 22 16:30:08 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2896-8602c3d75f1baba5147f7a5077b351d1eb74b36cc25673cc11a63feba361d52a3
ORCID 0000-0002-2546-4464
PageCount 24
ParticipantIDs crossref_citationtrail_10_1002_adem_202001216
crossref_primary_10_1002_adem_202001216
wiley_primary_10_1002_adem_202001216_ADEM202001216
PublicationCentury 2000
PublicationDate July 2021
2021-07-00
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: July 2021
PublicationDecade 2020
PublicationTitle Advanced engineering materials
PublicationYear 2021
References 2015; 79
2013; 69
2010; 108
2004; 27
2015; 73
2015; 75
2013; 61
2018; 10813
1972; 43
2020; 13
2011; 59
1998; 82
2017; 310
2019; 167
2011; 110
2017; 75
2018; 337
2018; 339
2011; 528
2015; 83
2013; 232
2003; 48
2018; 737
2018; 30
2015; 90
2010; 5
2019; 150
2000; 3885
2012; 536
2004; 386
2018; 342
2019; 9
2011; 2
2019; 6
2018; 744
2018; 108
2018; 349
2020; 780
2018; 101
1997; 24
2018; 103
2020; 148
2019; 104
1996
2020; 822
1998; 257
2017; 130
2015; 647
2020; 33
2012; 36
2017; 134
1970; 16
2018; 27
2019; 101
2016; 680
2014; 313
2018; 24
2017; 704
2012; 112
2015; 115
2019; 43
2015; 110
2018; 91
2010; 210
2005; 97
2020; 23
2020; 279
2015; 118
2016; 291
2012; 44
2012; 60
2013; 29
2021; 409
2021; 27
2006; 417
2010; 58
2009; 42
2015; 225
2016; 107
2020; 121
2018; 767
2015; 221
2021; 405
1999; 121
2020; 59
2019; 125
2019; 802
2020; 54
2003; 355
2012; 206
2019; 120
2016; 78
2003; 12
2001; 298
2007; 29
2012; 212
2016; 90
2017; 37
2020; 131
2014; 609
2018; 135
1993; 74
2014; 59
2016; 86
2015; 219
2016; 83
2016; 82
2016; 81
2020; 136
2020; 43
2014; 7
2017; 127
2014; 54
2014; 53
2010; 527
2018; 140
2013; 45
2011; 33
2017; 29
2006; 1
2002
2019; 266
2016; 57
2017; 94
2012; 92
1963; 16
1990; 68
2017; 93
2002; 24
1997; 121
2002; 22
2000; 1–2
2016; 139
2014
2009; 4
2017; 100
2012; 7
2017; 102
2019; 370
2011; 464
1977; 8
2018; 57
Cui B. (e_1_2_8_147_1) 2018; 10813
Luo M. (e_1_2_8_136_1) 2018; 140
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
Prevey P. S. (e_1_2_8_20_1) 2000
Ocaña J. L. (e_1_2_8_27_1) 2000; 3885
e_1_2_8_132_1
e_1_2_8_5_1
e_1_2_8_151_1
e_1_2_8_117_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_109_1
e_1_2_8_15_1
e_1_2_8_57_1
e_1_2_8_120_1
e_1_2_8_143_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_48_1
e_1_2_8_133_1
Garrison B. (e_1_2_8_7_1) 2002
e_1_2_8_110_1
e_1_2_8_152_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_63_1
e_1_2_8_137_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_18_1
e_1_2_8_14_1
Prabhakaran S. (e_1_2_8_38_1) 2016; 107
e_1_2_8_37_1
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_144_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_98_1
e_1_2_8_140_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_106_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_129_1
e_1_2_8_52_1
e_1_2_8_102_1
e_1_2_8_148_1
e_1_2_8_71_1
e_1_2_8_125_1
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
Zhou J. (e_1_2_8_55_1) 2002; 22
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_153_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_138_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_134_1
Yang X. (e_1_2_8_87_1) 2020; 13
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
Hu Y. (e_1_2_8_130_1) 2010; 108
e_1_2_8_70_1
Li Z. (e_1_2_8_54_1) 1997; 24
e_1_2_8_122_1
e_1_2_8_141_1
e_1_2_8_97_1
e_1_2_8_32_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_149_1
e_1_2_8_51_1
e_1_2_8_74_1
Peyre P. (e_1_2_8_9_1) 2018; 135
e_1_2_8_103_1
e_1_2_8_126_1
e_1_2_8_145_1
e_1_2_8_93_1
e_1_2_8_46_1
e_1_2_8_69_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_131_1
e_1_2_8_150_1
Askar'yan G. (e_1_2_8_2_1) 1963; 16
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_139_1
e_1_2_8_84_1
e_1_2_8_112_1
e_1_2_8_61_1
e_1_2_8_135_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
e_1_2_8_92_1
e_1_2_8_96_1
e_1_2_8_100_1
e_1_2_8_142_1
Zhao J. (e_1_2_8_113_1) 2019; 125
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_127_1
e_1_2_8_12_1
e_1_2_8_108_1
e_1_2_8_73_1
e_1_2_8_123_1
e_1_2_8_50_1
e_1_2_8_104_1
e_1_2_8_146_1
References_xml – volume: 1–2
  start-page: 426
  year: 2000
  end-page: 434
– volume: 680
  start-page: 544
  year: 2016
  publication-title: J. Alloys Compd.
– volume: 139
  start-page: 041004
  year: 2016
  publication-title: J. Manuf. Sci. Eng.
– volume: 29
  start-page: 012005
  year: 2017
  publication-title: J. Laser Appl.
– volume: 93
  start-page: 208
  year: 2017
  publication-title: Opt. Laser Technol.
– volume: 59
  start-page: 7219
  year: 2011
  publication-title: Acta Mater.
– volume: 6
  start-page: 100265
  year: 2019
  publication-title: Materialia
– volume: 125
  start-page: 1
  year: 2019
  publication-title: J. Appl. Phys.
– volume: 83
  start-page: 216
  year: 2015
  publication-title: Acta Mater.
– volume: 24
  start-page: 118
  year: 1997
  publication-title: Chin. J. Lasers
– volume: 37
  start-page: 3027
  year: 2017
  publication-title: J. Eur. Ceram. Soc.
– volume: 57
  start-page: 2467
  year: 2018
  publication-title: Appl. Opt.
– volume: 90
  start-page: 364
  year: 2016
  publication-title: Mater. Des.
– year: 2014
– volume: 802
  start-page: 573
  year: 2019
  publication-title: J. Alloys Compd.
– volume: 60
  start-page: 145
  year: 2012
  publication-title: Corros. Sci.
– volume: 91
  start-page: 165
  year: 2018
  publication-title: Eng. Fail Anal.
– volume: 339
  start-page: 48
  year: 2018
  publication-title: Surf. Coat. Technol.
– volume: 29
  start-page: 626
  year: 2013
  publication-title: Mater. Sci. Technol.
– volume: 5
  start-page: 175
  year: 2010
  publication-title: J. Laser Micro Nanoeng.
– volume: 82
  start-page: 2826
  year: 1998
  publication-title: J. Appl. Phys.
– volume: 103
  start-page: 142
  year: 2018
  publication-title: Opt. Laser Technol.
– volume: 13
  start-page: 1
  year: 2020
  publication-title: Materials
– volume: 118
  start-page: 134902
  year: 2015
  publication-title: J. Appl. Phys.
– volume: 36
  start-page: 809
  year: 2012
  publication-title: Mater. Des.
– volume: 130
  start-page: 350
  year: 2017
  publication-title: Mater. Des.
– volume: 97
  start-page: 113517
  year: 2005
  publication-title: J. Appl. Phys.
– volume: 136
  start-page: 105596
  year: 2020
  publication-title: Int. J. Fatigue
– volume: 7
  start-page: 158
  year: 2012
  publication-title: J. Laser Micro Nanoeng.
– volume: 43
  start-page: 1500
  year: 2020
  publication-title: Fatigue Fract. Eng. Mater. Struct.
– volume: 48
  start-page: 1593
  year: 2003
  publication-title: Scr. Mater.
– volume: 108
  start-page: 4
  year: 2010
  publication-title: J. Appl. Phys.
– volume: 59
  start-page: 1014
  year: 2011
  publication-title: Acta Mater.
– volume: 409
  start-page: 126848
  year: 2021
  publication-title: Surf. Coat. Technol.
– volume: 54
  start-page: 734
  year: 2014
  publication-title: Mater. Des.
– volume: 121
  start-page: 321
  year: 1999
  publication-title: J. Eng. Mater. Technol.
– volume: 108
  start-page: 32
  year: 2018
  publication-title: Opt. Laser Technol.
– volume: 337
  start-page: 501
  year: 2018
  publication-title: Surf. Coat. Technol.
– volume: 75
  start-page: 1299
  year: 2017
  publication-title: Mater. Sci. Eng. C
– volume: 33
  start-page: 101112
  year: 2020
  publication-title: Addit. Manuf.
– volume: 221
  start-page: 214
  year: 2015
  publication-title: J. Mater. Process. Technol.
– volume: 110
  start-page: 083504
  year: 2015
  publication-title: J. Appl. Phys.
– volume: 780
  start-page: 139199
  year: 2020
  publication-title: Mater. Sci. Eng. A
– volume: 115
  start-page: 213519
  year: 2015
  publication-title: J. Appl. Phys.
– volume: 206
  start-page: 3374
  year: 2012
  publication-title: Surf. Coat. Technol.
– volume: 7
  start-page: 7925
  year: 2014
  publication-title: Materials
– volume: 121
  start-page: 105784
  year: 2020
  publication-title: Opt. Laser Technol.
– volume: 405
  start-page: 126670
  year: 2021
  publication-title: Surf. Coat. Technol.
– volume: 58
  start-page: 3984
  year: 2010
  publication-title: Acta Mater.
– volume: 43
  start-page: 161
  year: 2019
  publication-title: Exp. Tech.
– volume: 150
  start-page: 404
  year: 2019
  publication-title: Int. J. Mech. Sci.
– volume: 75
  start-page: 157
  year: 2015
  publication-title: Opt. Laser Technol.
– volume: 135
  start-page: 241
  year: 2018
  publication-title: J. Laser Appl.
– volume: 212
  start-page: 1347
  year: 2012
  publication-title: J. Mater. Process. Technol.
– volume: 298
  start-page: 296
  year: 2001
  publication-title: Mater. Sci. Eng. A
– volume: 30
  start-page: 012001
  year: 2018
  publication-title: J. Laser Appl.
– year: 2002
– volume: 104
  start-page: 907
  year: 2019
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 94
  start-page: 15
  year: 2017
  publication-title: Opt. Laser Technol.
– volume: 2
  start-page: 332
  year: 2011
  publication-title: Int. J. Struct. Integrity
– volume: 12
  start-page: 414
  year: 2003
  publication-title: J. Mater. Eng. Perform.
– volume: 528
  start-page: 2128
  year: 2011
  publication-title: Mater. Sci. Eng. A
– volume: 27
  start-page: 649
  year: 2004
  publication-title: Fatigue Fract. Eng. Mater. Struct.
– volume: 121
  start-page: 432
  year: 1997
  publication-title: Nucl. Instr. Methods Phys. Res. Sect. B
– volume: 822
  start-page: 153707
  year: 2020
  publication-title: J. Alloys Compd.
– volume: 102
  start-page: 121
  year: 2017
  publication-title: Int. J. Fatigue
– volume: 9
  start-page: 746
  year: 2019
  publication-title: Metals
– volume: 60
  start-page: 4997
  year: 2012
  publication-title: Acta Mater.
– volume: 42
  start-page: 1250
  year: 2009
  publication-title: Tribol. Int.
– volume: 24
  start-page: 1021
  year: 2002
  publication-title: Int. J. Fatigue
– volume: 23
  start-page: 5
  year: 2020
  publication-title: Manuf. Lett.
– volume: 131
  start-page: 106409
  year: 2020
  publication-title: Opt. Laser Technol.
– volume: 291
  start-page: 161
  year: 2016
  publication-title: Surf. Coat. Technol.
– volume: 219
  start-page: 230
  year: 2015
  publication-title: J. Mater. Process. Technol.
– volume: 536
  start-page: 82
  year: 2012
  publication-title: Mater. Sci. Eng. A
– volume: 22
  start-page: 7
  year: 2002
  publication-title: Appl. Laser
– volume: 279
  start-page: 116588
  year: 2020
  publication-title: J. Mater. Process. Technol.
– volume: 82
  start-page: 428
  year: 2016
  publication-title: Int. J. Fatigue
– volume: 107
  start-page: 98
  year: 2016
  publication-title: JMADE
– volume: 464
  start-page: 588
  year: 2011
  publication-title: Key Eng. Mater.
– volume: 10813
  start-page: 27
  year: 2018
  publication-title: Int. Soc. Opt. Eng.
– volume: 349
  start-page: 503
  year: 2018
  publication-title: Surf. Coat. Technol.
– volume: 3885
  start-page: 2520
  year: 2000
  publication-title: Proc. SPIE – Int. Soc. Opt. Eng.
– volume: 57
  start-page: 1776
  year: 2016
  publication-title: Mater. Trans.
– volume: 1
  start-page: 1
  year: 2006
  publication-title: J. Laser Micro/Nanoeng.
– volume: 609
  start-page: 195
  year: 2014
  publication-title: Mater. Sci. Eng. A
– volume: 54
  start-page: 055204
  year: 2020
  publication-title: J. Phys. D: Appl. Phys.
– volume: 232
  start-page: 464
  year: 2013
  publication-title: Surf. Coat. Technol.
– volume: 81
  start-page: 137
  year: 2016
  publication-title: Opt. Laser Technol.
– volume: 417
  start-page: 334
  year: 2006
  publication-title: Mater. Sci. Eng., A
– volume: 370
  start-page: 244
  year: 2019
  publication-title: Surf. Coat. Technol.
– volume: 744
  start-page: 156
  year: 2018
  publication-title: J. Alloys Compd.
– volume: 110
  start-page: 083504
  year: 2011
  publication-title: J. Appl. Phys.
– volume: 42
  start-page: 1324
  year: 2009
  publication-title: Tribol. Int.
– volume: 27
  start-page: 26
  year: 2021
  publication-title: Manuf. Lett.
– volume: 9
  start-page: 626
  year: 2019
  publication-title: Metals
– volume: 737
  start-page: 94
  year: 2018
  publication-title: Mater. Sci. Eng. A
– volume: 92
  start-page: 1369
  year: 2012
  publication-title: Philos. Mag.
– volume: 43
  start-page: 3893
  year: 1972
  publication-title: J. Appl. Phys.
– volume: 16
  start-page: 113
  year: 1970
  publication-title: Appl. Phys. Lett.
– volume: 33
  start-page: 788
  year: 2011
  publication-title: Int. J. Fatigue
– volume: 59
  start-page: 23
  year: 2014
  publication-title: Int. J. Fatigue
– volume: 167
  start-page: 107626
  year: 2019
  publication-title: Mater. Des.
– volume: 4
  start-page: 3
  year: 2009
  publication-title: J. Laser Micro/Nanoeng.
– volume: 100
  start-page: 407
  year: 2017
  publication-title: Int. J. Fatigue
– volume: 101
  start-page: 1247
  year: 2019
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 100
  start-page: 911
  year: 2017
  publication-title: J. Am. Ceram. Soc.
– volume: 134
  start-page: 523
  year: 2017
  publication-title: Mater. Des.
– volume: 68
  start-page: 775
  year: 1990
  publication-title: J. Appl. Phys.
– volume: 647
  start-page: 7
  year: 2015
  publication-title: Mater. Sci. Eng. A
– volume: 225
  start-page: 463
  year: 2015
  publication-title: J. Mater. Process. Technol.
– volume: 528
  start-page: 914
  year: 2011
  publication-title: Mater. Sci. Eng. A
– volume: 58
  start-page: 5354
  year: 2010
  publication-title: Acta Mater.
– volume: 45
  start-page: 389
  year: 2013
  publication-title: Opt. Laser Technol.
– volume: 704
  start-page: 459
  year: 2017
  publication-title: Mater. Sci. Eng. A
– volume: 86
  start-page: 53
  year: 2016
  publication-title: Opt. Lasers Eng.
– volume: 528
  start-page: 2899
  year: 2011
  publication-title: Mater. Sci. Eng. A
– volume: 127
  start-page: 252
  year: 2017
  publication-title: Acta Mater.
– volume: 120
  start-page: 105763
  year: 2019
  publication-title: Opt. Laser Technol.
– year: 1996
– volume: 74
  start-page: 2268
  year: 1993
  publication-title: J. Appl. Phys.
– volume: 140
  start-page: 1
  year: 2018
  publication-title: J. Manuf. Sci. Eng. Trans. ASME
– volume: 79
  start-page: 1
  year: 2015
  publication-title: Int. J. Fatigue
– volume: 8
  start-page: 119
  year: 1977
  publication-title: Metall. Trans. A
– volume: 266
  start-page: 612
  year: 2019
  publication-title: J. Mater. Process Technol.
– volume: 313
  start-page: 692
  year: 2014
  publication-title: Appl. Surf. Sci.
– volume: 210
  start-page: 2304
  year: 2010
  publication-title: J. Mater. Process. Technol.
– volume: 527
  start-page: 3411
  year: 2010
  publication-title: Mater. Sci. Eng. A
– volume: 44
  start-page: 292
  year: 2012
  publication-title: Int. J. Fatigue
– volume: 53
  start-page: 452
  year: 2014
  publication-title: Mater. Des.
– volume: 148
  start-page: 103475
  year: 2020
  publication-title: Int. J. Mach. Tools Manuf.
– volume: 29
  start-page: 1302
  year: 2007
  publication-title: Int. J. Fatigue
– volume: 767
  start-page: 253
  year: 2018
  publication-title: J. Alloys Compd.
– volume: 257
  start-page: 322
  year: 1998
  publication-title: Mater. Sci. Eng. A
– volume: 355
  start-page: 216
  year: 2003
  publication-title: Mater. Sci. Eng. A
– volume: 59
  start-page: 100
  year: 2020
  publication-title: J. Mater. Sci. Technol.
– volume: 112
  start-page: 033515
  year: 2012
  publication-title: J. Appl. Phys.
– volume: 24
  start-page: 67
  year: 2018
  publication-title: Addit. Manuf.
– volume: 90
  start-page: 434
  year: 2015
  publication-title: Corros. Sci.
– volume: 310
  start-page: 157
  year: 2017
  publication-title: Surf. Coat. Technol.
– volume: 69
  start-page: 319
  year: 2013
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 27
  start-page: 1466
  year: 2018
  publication-title: J. Mater. Eng. Perform.
– volume: 86
  start-page: 54
  year: 2016
  publication-title: Opt. Laser Technol.
– volume: 16
  start-page: 1638
  year: 1963
  publication-title: Sov. J. Exp. Theor. Phys.
– volume: 386
  start-page: 291
  year: 2004
  publication-title: Mater. Sci. Eng. A
– volume: 342
  start-page: 29
  year: 2018
  publication-title: Surf. Coat. Technol.
– volume: 83
  start-page: 43
  year: 2016
  publication-title: Opt. Laser Technol.
– volume: 61
  start-page: 1957
  year: 2013
  publication-title: Acta Mater.
– volume: 101
  start-page: 4933
  year: 2018
  publication-title: J. Am. Ceram. Soc.
– volume: 73
  start-page: 94
  year: 2015
  publication-title: Opt. Laser Technol.
– volume: 78
  start-page: 15
  year: 2016
  publication-title: Opt. Laser Technol.
– ident: e_1_2_8_19_1
  doi: 10.1016/j.surfcoat.2019.04.060
– ident: e_1_2_8_23_1
  doi: 10.1016/j.msec.2017.03.003
– ident: e_1_2_8_144_1
  doi: 10.1016/j.matdes.2017.08.066
– ident: e_1_2_8_78_1
  doi: 10.1016/j.ijfatigue.2015.04.018
– ident: e_1_2_8_110_1
  doi: 10.1063/1.3651508
– ident: e_1_2_8_35_1
  doi: 10.1016/j.actamat.2010.10.032
– ident: e_1_2_8_124_1
  doi: 10.1007/s00170-013-5032-8
– ident: e_1_2_8_112_1
  doi: 10.1016/j.surfcoat.2021.126848
– ident: e_1_2_8_97_1
  doi: 10.1016/j.corsci.2014.10.045
– ident: e_1_2_8_84_1
  doi: 10.1016/j.ijfatigue.2017.04.016
– ident: e_1_2_8_126_1
  doi: 10.4028/www.scientific.net/KEM.464.588
– ident: e_1_2_8_36_1
  doi: 10.1063/1.4881555
– ident: e_1_2_8_28_1
  doi: 10.1063/1.1915537
– ident: e_1_2_8_95_1
  doi: 10.1016/j.surfcoat.2018.01.043
– ident: e_1_2_8_101_1
  doi: 10.1016/j.mfglet.2019.11.003
– volume-title: High Cycle Fatigue (Hcf) Science and Technology Program 2000 Annual Report. Nuclear Data in Science and Technology
  year: 2002
  ident: e_1_2_8_7_1
– ident: e_1_2_8_13_1
  doi: 10.1016/S0921-5093(98)00793-X
– ident: e_1_2_8_151_1
  doi: 10.1016/j.optlastec.2015.04.009
– ident: e_1_2_8_150_1
  doi: 10.1016/j.optlaseng.2016.05.014
– ident: e_1_2_8_10_1
  doi: 10.1016/j.surfcoat.2018.06.020
– ident: e_1_2_8_139_1
  doi: 10.1016/j.jmatprotec.2020.116588
– ident: e_1_2_8_122_1
  doi: 10.2961/jlmn.2010.02.0014
– ident: e_1_2_8_94_1
  doi: 10.1016/j.jallcom.2018.06.030
– ident: e_1_2_8_59_1
  doi: 10.1063/1.366113
– ident: e_1_2_8_111_1
  doi: 10.1063/1.4742997
– ident: e_1_2_8_50_1
  doi: 10.3390/ma7127925
– ident: e_1_2_8_77_1
  doi: 10.1016/j.msea.2010.12.058
– ident: e_1_2_8_60_1
  doi: 10.1007/s40799-018-0291-9
– ident: e_1_2_8_61_1
  doi: 10.1088/1361-6463/abc040
– ident: e_1_2_8_153_1
  doi: 10.1016/j.surfcoat.2013.06.003
– ident: e_1_2_8_107_1
  doi: 10.1007/s00170-019-03868-y
– ident: e_1_2_8_140_1
  doi: 10.1016/j.addma.2018.09.013
– ident: e_1_2_8_71_1
  doi: 10.1016/j.msea.2010.11.045
– ident: e_1_2_8_125_1
  doi: 10.2351/1.5012962
– start-page: 426
  volume-title: Heat Treating, Proc.
  year: 2000
  ident: e_1_2_8_20_1
– ident: e_1_2_8_73_1
  doi: 10.1016/j.ijfatigue.2013.10.001
– ident: e_1_2_8_66_1
  doi: 10.1016/j.ijfatigue.2020.105596
– ident: e_1_2_8_145_1
  doi: 10.1016/j.matdes.2019.107626
– ident: e_1_2_8_74_1
  doi: 10.1016/j.msea.2018.09.016
– ident: e_1_2_8_91_1
  doi: 10.1016/j.msea.2017.08.050
– ident: e_1_2_8_127_1
  doi: 10.1016/j.jmatprotec.2015.02.030
– ident: e_1_2_8_76_1
  doi: 10.1111/j.1460-2695.2004.00763.x
– ident: e_1_2_8_24_1
  doi: 10.1016/j.surfcoat.2018.02.009
– ident: e_1_2_8_39_1
  doi: 10.1016/j.optlastec.2019.105763
– ident: e_1_2_8_37_1
  doi: 10.1016/j.actamat.2012.06.024
– volume: 24
  start-page: 118
  year: 1997
  ident: e_1_2_8_54_1
  publication-title: Chin. J. Lasers
– ident: e_1_2_8_57_1
  doi: 10.1016/j.optlastec.2020.106409
– ident: e_1_2_8_63_1
  doi: 10.1016/j.actamat.2011.07.070
– ident: e_1_2_8_45_1
  doi: 10.1016/j.jmatprotec.2018.11.024
– ident: e_1_2_8_56_1
  doi: 10.2320/matertrans.M2016150
– volume: 140
  start-page: 1
  year: 2018
  ident: e_1_2_8_136_1
  publication-title: J. Manuf. Sci. Eng. Trans. ASME
– ident: e_1_2_8_105_1
  doi: 10.1016/j.msea.2014.05.003
– ident: e_1_2_8_123_1
  doi: 10.2351/1.4967013
– ident: e_1_2_8_75_1
  doi: 10.1111/ffe.13226
– ident: e_1_2_8_100_1
  doi: 10.1016/j.engfailanal.2018.04.045
– ident: e_1_2_8_67_1
  doi: 10.1016/j.msea.2020.139199
– ident: e_1_2_8_17_1
  doi: 10.1016/j.jmatprotec.2015.06.026
– ident: e_1_2_8_4_1
  doi: 10.1063/1.1653116
– volume: 3885
  start-page: 2520
  year: 2000
  ident: e_1_2_8_27_1
  publication-title: Proc. SPIE – Int. Soc. Opt. Eng.
– ident: e_1_2_8_49_1
  doi: 10.1016/S0142-1123(02)00022-1
– ident: e_1_2_8_117_1
  doi: 10.1108/17579861111162923
– ident: e_1_2_8_90_1
  doi: 10.1016/j.triboint.2009.04.005
– ident: e_1_2_8_119_1
  doi: 10.1016/j.optlastec.2015.06.029
– ident: e_1_2_8_16_1
  doi: 10.1115/1.2812381
– ident: e_1_2_8_25_1
  doi: 10.1063/1.346783
– ident: e_1_2_8_43_1
  doi: 10.1016/j.jallcom.2019.06.156
– ident: e_1_2_8_22_1
  doi: 10.1016/j.ijfatigue.2015.08.024
– ident: e_1_2_8_79_1
  doi: 10.1016/j.msea.2010.10.020
– ident: e_1_2_8_51_1
  doi: 10.1016/j.optlastec.2015.09.014
– volume: 13
  start-page: 1
  year: 2020
  ident: e_1_2_8_87_1
  publication-title: Materials
– ident: e_1_2_8_132_1
  doi: 10.1016/j.jmatprotec.2010.08.025
– ident: e_1_2_8_62_1
  doi: 10.1016/j.ijfatigue.2017.04.002
– ident: e_1_2_8_137_1
  doi: 10.1016/j.surfcoat.2012.01.050
– ident: e_1_2_8_21_1
  doi: 10.1016/j.msea.2017.08.050
– ident: e_1_2_8_80_1
  doi: 10.1016/j.optlastec.2017.03.017
– ident: e_1_2_8_15_1
  doi: 10.1361/105994903770342944
– ident: e_1_2_8_48_1
  doi: 10.1016/j.addma.2020.101112
– ident: e_1_2_8_89_1
  doi: 10.1016/j.triboint.2009.04.014
– volume: 108
  start-page: 4
  year: 2010
  ident: e_1_2_8_130_1
  publication-title: J. Appl. Phys.
– ident: e_1_2_8_47_1
  doi: 10.1007/s00170-018-3033-3
– ident: e_1_2_8_12_1
  doi: 10.1016/j.ijmachtools.2019.103475
– ident: e_1_2_8_14_1
  doi: 10.1016/S0921-5093(00)01277-6
– ident: e_1_2_8_18_1
  doi: 10.1364/AO.57.002467
– ident: e_1_2_8_135_1
  doi: 10.1016/j.matdes.2015.10.128
– ident: e_1_2_8_31_1
  doi: 10.1016/j.actamat.2017.01.050
– ident: e_1_2_8_58_1
  doi: 10.1063/1.354710
– ident: e_1_2_8_108_1
  doi: 10.3390/met9070746
– ident: e_1_2_8_142_1
  doi: 10.1111/jace.15742
– ident: e_1_2_8_98_1
  doi: 10.1016/j.corsci.2012.03.044
– ident: e_1_2_8_32_1
– ident: e_1_2_8_96_1
  doi: 10.1016/j.jmatprotec.2012.01.023
– volume: 125
  start-page: 1
  year: 2019
  ident: e_1_2_8_113_1
  publication-title: J. Appl. Phys.
– ident: e_1_2_8_129_1
  doi: 10.1016/j.optlastec.2018.06.032
– ident: e_1_2_8_72_1
  doi: 10.1016/j.actamat.2014.09.032
– ident: e_1_2_8_118_1
  doi: 10.1016/j.matdes.2011.10.053
– ident: e_1_2_8_143_1
  doi: 10.1016/j.jeurceramsoc.2017.03.005
– ident: e_1_2_8_92_1
  doi: 10.1016/j.jmst.2020.03.059
– ident: e_1_2_8_70_1
  doi: 10.1016/j.ijfatigue.2012.03.008
– ident: e_1_2_8_93_1
  doi: 10.1016/S1359-6462(03)00143-X
– ident: e_1_2_8_134_1
  doi: 10.2961/jlmn.2012.02.0006
– ident: e_1_2_8_103_1
  doi: 10.1016/j.jallcom.2020.153707
– ident: e_1_2_8_8_1
  doi: 10.1016/j.ijfatigue.2010.12.016
– ident: e_1_2_8_85_1
  doi: 10.1016/j.surfcoat.2018.02.083
– ident: e_1_2_8_83_1
  doi: 10.1016/j.jallcom.2018.01.070
– ident: e_1_2_8_26_1
  doi: 10.1016/j.msea.2004.07.025
– ident: e_1_2_8_106_1
  doi: 10.1016/j.surfcoat.2020.126670
– ident: e_1_2_8_82_1
  doi: 10.1016/j.matdes.2013.07.009
– ident: e_1_2_8_52_1
  doi: 10.1016/j.optlastec.2016.02.007
– ident: e_1_2_8_121_1
  doi: 10.1016/j.mfglet.2020.11.006
– ident: e_1_2_8_120_1
  doi: 10.1016/j.optlastec.2017.03.003
– ident: e_1_2_8_102_1
  doi: 10.1179/1743284712Y.0000000166
– volume: 135
  start-page: 241
  year: 2018
  ident: e_1_2_8_9_1
  publication-title: J. Laser Appl.
– ident: e_1_2_8_88_1
  doi: 10.1016/j.ijfatigue.2006.10.005
– volume: 10813
  start-page: 27
  year: 2018
  ident: e_1_2_8_147_1
  publication-title: Int. Soc. Opt. Eng.
– ident: e_1_2_8_5_1
  doi: 10.1063/1.1661837
– ident: e_1_2_8_41_1
  doi: 10.1080/14786435.2011.645899
– ident: e_1_2_8_133_1
  doi: 10.1016/j.jmatprotec.2014.12.028
– ident: e_1_2_8_64_1
  doi: 10.1016/j.jallcom.2016.04.179
– ident: e_1_2_8_116_1
  doi: 10.1016/j.optlastec.2012.06.019
– volume: 16
  start-page: 1638
  year: 1963
  ident: e_1_2_8_2_1
  publication-title: Sov. J. Exp. Theor. Phys.
– ident: e_1_2_8_11_1
  doi: 10.1016/j.optlastec.2017.12.044
– ident: e_1_2_8_44_1
  doi: 10.2961/jlmn.2009.01.0007
– ident: e_1_2_8_68_1
  doi: 10.1016/j.optlastec.2019.105784
– ident: e_1_2_8_6_1
  doi: 10.1007/BF02677273
– ident: e_1_2_8_53_1
  doi: 10.1016/S0168-583X(96)00551-4
– ident: e_1_2_8_30_1
  doi: 10.1016/j.actamat.2010.03.026
– ident: e_1_2_8_152_1
  doi: 10.1016/j.optlastec.2016.07.003
– ident: e_1_2_8_40_1
  doi: 10.1063/1.3651508
– ident: e_1_2_8_81_1
  doi: 10.1016/j.matdes.2013.08.104
– ident: e_1_2_8_99_1
  doi: 10.1016/j.surfcoat.2016.12.093
– volume: 107
  start-page: 98
  year: 2016
  ident: e_1_2_8_38_1
  publication-title: JMADE
– ident: e_1_2_8_115_1
  doi: 10.1016/j.surfcoat.2016.02.038
– ident: e_1_2_8_86_1
  doi: 10.1007/s11665-018-3172-6
– ident: e_1_2_8_141_1
  doi: 10.1111/jace.14630
– ident: e_1_2_8_69_1
  doi: 10.1016/S0921-5093(03)00069-8
– ident: e_1_2_8_104_1
  doi: 10.1016/j.msea.2015.08.084
– ident: e_1_2_8_131_1
– ident: e_1_2_8_65_1
  doi: 10.1016/j.msea.2010.01.076
– ident: e_1_2_8_34_1
  doi: 10.2961/jlmn.2006.03.0002
– ident: e_1_2_8_46_1
  doi: 10.1016/j.matdes.2017.05.083
– ident: e_1_2_8_33_1
  doi: 10.1016/j.msea.2005.11.017
– volume: 22
  start-page: 7
  year: 2002
  ident: e_1_2_8_55_1
  publication-title: Appl. Laser
– ident: e_1_2_8_42_1
  doi: 10.1063/1.4932142
– ident: e_1_2_8_148_1
  doi: 10.1016/j.apsusc.2014.06.056
– ident: e_1_2_8_146_1
  doi: 10.1016/j.mtla.2019.100265
– ident: e_1_2_8_109_1
  doi: 10.1016/j.actamat.2012.12.016
– ident: e_1_2_8_138_1
  doi: 10.1016/j.ijmecsci.2018.10.040
– ident: e_1_2_8_128_1
  doi: 10.1115/1.4034891
– ident: e_1_2_8_29_1
  doi: 10.1016/j.actamat.2010.06.010
– ident: e_1_2_8_114_1
  doi: 10.1016/j.msea.2011.12.072
– ident: e_1_2_8_149_1
  doi: 10.1016/j.optlastec.2016.03.028
– ident: e_1_2_8_3_1
  doi: 10.3390/met9060626
SSID ssj0011013
Score 2.6474257
SecondaryResourceType review_article
Snippet By inducing work hardening and beneficial compressive residual stresses in near‐surface regions, laser shock peening (LSP) improves the fatigue performance of...
SourceID crossref
wiley
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms additive manufacturing
fatigue
laser shock peening
mechanical properties
residual stresses
Title Recent Developments and Novel Applications of Laser Shock Peening: A Review
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadem.202001216
Volume 23
WOSCitedRecordID wos000644895700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1527-2648
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011013
  issn: 1438-1656
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF609aAH32J9sQfB02J3k91NvBW1CJZS1EpvYZ8oSCtt9fc7m6QxPYigx4TJEmZndr7JTL5B6FyoWAFu5SSxPiaxUo6kXDviebvtnUkSms9Yeu7Jfj8ZjdJB7S_-gh-i-uAWPCM_r4ODKz27_CYNDd3jkN-xnJVMrKImA-PlDdS8eegOe1UlAUwub7KPwbED08yCuLHNLpdXWApMdaCaR5ru1v_fcRttligTdwqz2EErbryLNmrcg3voHgAjBBxc6xqaYTW2uD-BG7hTK2zjicc9iHZT_PgCxyceQO4La1zhDi5KC_to2L19ur4j5WQFYiDBEiQMnjKRldxTrbQC0CS9VAANpY44tdRpGesotFRzISNjKFUi8k6rSFDLmYoOUGM8GbtDhK2VPvVCCZUYyJ7C4DLKjIV9pqn3QrQQWag1MyXteJh-8ZYVhMksC0rKKiW10EUl_14QbvwoyXLd_yKWBYuuro7-8tAxWmehlSXv0j1Bjfn0w52iNfM5f51Nz0qL-wI389VF
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF60FdSDb7E-9yB4WtrNYzfxVtRSaQxFW-ktbPaBgrTSVn-_s0ka04MI4jFhsoTJzM7MzpdvELpkwhOQt_okUMYjnhCahH6qifFbLaNlENBsxtJzxOM4GI3CfoEmtP_C5PwQ5YGb9Yxsv7YObg-km9-soRY-DgWek9GSsVVU98CWwMjrt4-dYVS2EsDmMpS9B55tqWYWzI0tp7m8wlJkqmaqWajpbP_DS-6grSLPxO3cMHbRih7voc0K--A-6kHKCCEHV3BDMyzGCscTuIHbldY2nhgcQbyb4qcX2EBxH6pfWOMat3HeXDhAw87d4KZLitkKREKJxYgdPSVdxX1DU5EKSJu44QKSQ566PlVUp9xLXQuq9hl3paRUMNfoVLiMKt8R7iGqjSdjfYSwUtyEhgkmAgn1kx1dRh2p4EvT0BjGGogs9JrIgnjczr94S3LKZCexSkpKJTXQVSn_nlNu_CjpZMr_RSyxNl1eHf_loQu03h08REl0H_dO0IZjgS0ZZvcU1ebTD32G1uTn_HU2PS_M7wsWcNk1
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB60FdGDb7E-9yB4WuzmsZt4K9agNISiVnoLm32gIGlpq7_f3SSN7UEE8ZgwWcLszM5M5ss3AJeUe9zkrT4OpPawx7nCoZ8prP12WysRBKSYsfQSsyQJhsOwX6EJ7b8wJT9E_cHNekZxXlsHV2Opr79ZQy183BR4TkFLRleh6dlJMg1odh-jQVy3EozNFSh7z3i2pZqZMze2nevlFZYi02KmWoSaaPsfXnIHtqo8E3VKw9iFFZXvweYC--A-9EzKaEIOWsANTRHPJUpG5gbqLLS20Uij2MS7CXp6NQco6pvq16xxgzqobC4cwCC6e769x9VsBSxMiUWxHT0lXMl8TTKecZM2Mc24SQ5Z5vpEEpUxL3MtqNqnzBWCEE5drTLuUiJ9h7uH0MhHuToCJCXToaac8kCY-smOLiOOkGanSag1pS3Ac72moiIet_Mv3tOSMtlJrZLSWkktuKrlxyXlxo-STqH8X8RSa9P11fFfHrqA9X43SuOHpHcCG47FtRSQ3VNozCYf6gzWxOfsbTo5r6zvC9fD2LA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Developments+and+Novel+Applications+of+Laser+Shock+Peening%3A+A+Review&rft.jtitle=Advanced+engineering+materials&rft.au=Zhang%2C+Chaoyi&rft.au=Dong%2C+Yalin&rft.au=Ye%2C+Chang&rft.date=2021-07-01&rft.issn=1438-1656&rft.eissn=1527-2648&rft.volume=23&rft.issue=7&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadem.202001216&rft.externalDBID=10.1002%252Fadem.202001216&rft.externalDocID=ADEM202001216
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1438-1656&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1438-1656&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1438-1656&client=summon