Around Jensen’s inequality for strongly convex functions

In this paper we use basic properties of strongly convex functions to obtain new inequalities including Jensen type and Jensen–Mercer type inequalities. Applications for special means are pointed out as well. We also give a Jensen’s operator inequality for strongly convex functions. As a corollary,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Aequationes mathematicae Jg. 92; H. 1; S. 25 - 37
Hauptverfasser: Moradi, Hamid Reza, Omidvar, Mohsen Erfanian, Adil Khan, Muhammad, Nikodem, Kazimierz
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cham Springer International Publishing 01.02.2018
Schlagworte:
ISSN:0001-9054, 1420-8903
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we use basic properties of strongly convex functions to obtain new inequalities including Jensen type and Jensen–Mercer type inequalities. Applications for special means are pointed out as well. We also give a Jensen’s operator inequality for strongly convex functions. As a corollary, we improve the Hölder-McCarthy inequality under suitable conditions. More precisely we show that if S p A ⊂ 1 , ∞ , then A x , x r ≤ A r x , x - r 2 - r 2 A 2 x , x - A x , x 2 , r ≥ 2 and if S p A ⊂ 0 , 1 , then A r x , x ≤ A x , x r + r - r 2 2 A x , x 2 - A 2 x , x , 0 < r < 1 for each positive operator A and x ∈ H with x = 1 .
ISSN:0001-9054
1420-8903
DOI:10.1007/s00010-017-0496-5