Optimization for multi-objective sum of linear and linear fractional programming problem: fuzzy nonlinear programming approach
Multi-objective linear plus linear fractional programming problem is an emerging tool for solving problems in different environments such as production planning, financial and corporate planning and healthcare and hospital planning which has attracted many researchers in recent years. This paper pre...
Uloženo v:
| Vydáno v: | Mathematical sciences (Karaj, Iran) Ročník 14; číslo 3; s. 219 - 233 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2020
Springer Nature B.V |
| Témata: | |
| ISSN: | 2008-1359, 2251-7456 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Multi-objective linear plus linear fractional programming problem is an emerging tool for solving problems in different environments such as production planning, financial and corporate planning and healthcare and hospital planning which has attracted many researchers in recent years. This paper presents a method to find a Pareto optimal solution for the multi-objective linear plus linear fractional programming problem through nonlinear membership function. The proposed approach defines a fuzzy goal for each objective through a nonlinear membership function. By means of nonlinear membership function, the multi-objective linear plus linear fractional programming problem transformed into a multi-objective nonlinear programming problem. Applying the linear approximation method, the nonlinear objectives are converted into linear. In order to solve the multi-objective linear programming problem, the fuzzy goal programming model is formulated by minimizing the negative deviational variables. The proposed procedure is illustrated through numerical examples and a real-life application problem. Further, it is compared with the existing methods. Finally, the Euclidean distance function has been used to prove the efficiency of the proposed method. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2008-1359 2251-7456 |
| DOI: | 10.1007/s40096-020-00333-w |