Asynchronous multisource alignment-driven real-time online detection of ash content in flotation clean coal

Accurate real-time monitoring of the ash content in flotation clean coal is pivotal for intelligent optimization and closed-loop control of the flotation process, directly affecting product quality and the economic performance of coal preparation plants. To address the limitations of traditional app...

Full description

Saved in:
Bibliographic Details
Published in:International journal of coal preparation and utilization Vol. 45; no. 12; pp. 2993 - 3020
Main Authors: Wang, Lanhao, Liu, Jiahui, Dai, Wei, Gui, Xiahui, Wang, Hongyan
Format: Journal Article
Language:English
Published: Abingdon Taylor & Francis 02.12.2025
Taylor & Francis Ltd
Subjects:
ISSN:1939-2699, 1939-2702
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Accurate real-time monitoring of the ash content in flotation clean coal is pivotal for intelligent optimization and closed-loop control of the flotation process, directly affecting product quality and the economic performance of coal preparation plants. To address the limitations of traditional approaches-namely response lag, insufficient accuracy, and inefficient fusion of multisource information-this study proposes an intelligent online sensing method based on multisource data fusion, with the prediction pipeline decoupled into three stages: alignment - representation - prediction. First, a multiscale, differentiable dynamic time-warping (MSSoftDTW) scheme is employed to precisely align asynchronous multisource time-series data, thereby enhancing cross-modal temporal consistency. Second, an interpretable Constructive algorithm with response-weight mechanism (ICA-RW) is introduced to enable feature learning and structural adaptation, suppressing redundancy and collinearity while improving feature robustness. Third, an ensemble regression model that combines a relevance vector machine with adaptive boosting (RVM-Adaboost) is developed to better accommodate nonlinear relationships and drifts in operating conditions. By fusing X-ray fluorescence (XRF) spectra, key process variables, and features extracted from tailings images, the method achieves high-accuracy, real-time prediction of clean-coal ash content. Validation on industrial-site data demonstrates significant gains in both accuracy and stability over conventional regression baselines, meeting the real-time requirements of online monitoring and control and providing deployable support for flotation process optimization and intelligent upgrading.
AbstractList Accurate real-time monitoring of the ash content in flotation clean coal is pivotal for intelligent optimization and closed-loop control of the flotation process, directly affecting product quality and the economic performance of coal preparation plants. To address the limitations of traditional approaches-namely response lag, insufficient accuracy, and inefficient fusion of multisource information-this study proposes an intelligent online sensing method based on multisource data fusion, with the prediction pipeline decoupled into three stages: alignment - representation - prediction. First, a multiscale, differentiable dynamic time-warping (MSSoftDTW) scheme is employed to precisely align asynchronous multisource time-series data, thereby enhancing cross-modal temporal consistency. Second, an interpretable Constructive algorithm with response-weight mechanism (ICA-RW) is introduced to enable feature learning and structural adaptation, suppressing redundancy and collinearity while improving feature robustness. Third, an ensemble regression model that combines a relevance vector machine with adaptive boosting (RVM-Adaboost) is developed to better accommodate nonlinear relationships and drifts in operating conditions. By fusing X-ray fluorescence (XRF) spectra, key process variables, and features extracted from tailings images, the method achieves high-accuracy, real-time prediction of clean-coal ash content. Validation on industrial-site data demonstrates significant gains in both accuracy and stability over conventional regression baselines, meeting the real-time requirements of online monitoring and control and providing deployable support for flotation process optimization and intelligent upgrading.
Author Wang, Lanhao
Gui, Xiahui
Liu, Jiahui
Wang, Hongyan
Dai, Wei
Author_xml – sequence: 1
  givenname: Lanhao
  surname: Wang
  fullname: Wang, Lanhao
  organization: China University of Mining and Technology
– sequence: 2
  givenname: Jiahui
  surname: Liu
  fullname: Liu, Jiahui
  organization: China University of Mining and Technology
– sequence: 3
  givenname: Wei
  surname: Dai
  fullname: Dai, Wei
  organization: China University of Mining and Technology
– sequence: 4
  givenname: Xiahui
  surname: Gui
  fullname: Gui, Xiahui
  organization: China University of Mining and Technology
– sequence: 5
  givenname: Hongyan
  surname: Wang
  fullname: Wang, Hongyan
  email: wanghongyan@cumt.edu.cn
  organization: China University of Mining and Technology
BookMark eNp9UEtPAyEQJkYT6-MnmJB43jqw3bLcbBpfiYkXPRNkB0VZqEA1_fdSq1cvM5OZ75H5jsh-iAEJOWMwZdDDBZOt5HMppxx4N-Vdz5jo98hku2-4AL7_N1fQITnK-Q1gzpmcTcj7Im-CeU0xxHWm49oXl-M6GaTau5cwYijNkNwnBppQ-6a4EWkM3gWkAxY0xcVAo6U6v1ITQ6kE6gK1Phb9czMeda1R-xNyYLXPePrbj8nT9dXj8ra5f7i5Wy7uG8P7vjSml20HM-xBCmwFZ4Os40ywWcs1t6ztUEtr589iAGGlkPA8DDAIozu0gNAek_Od7irFjzXmot7qS6FaqpaLngMIkBXV7VAmxZwTWrVKbtRpoxioba7qL1e1zVX95lp5lzueCzamUX_F5AdV9MbHZJMOxlWb_yW-AbDSgnw
Cites_doi 10.1080/19392699.2022.2139250
10.1145/3318299.3318394
10.1109/TII.2021.3092361
10.1016/j.mineng.2005.12.010
10.1016/j.powtec.2024.119866
10.1016/S0967-0661(99)00187-2
10.4028/www.scientific.net/AMR.524-527.1007
10.3390/pr13082650
10.1016/j.aca.2014.12.033
10.1515/revce-2024-0023
10.1162/15324430152748236
10.1109/DDCLS49620.2020.9275224
10.1109/CCDC62350.2024.10587915
10.1080/19392699.2024.2412749
10.1080/19392699.2024.2322701
10.1080/19392699.2023.2301312
10.1109/WI-IAT62293.2024.00142
10.1016/j.ijmst.2018.06.005
10.1080/19392699.2018.1455669
10.1080/19392699.2024.2341966
10.1109/TII.2024.3423487
10.1080/19392699.2024.2330421
10.1109/ICASSP48485.2024.10446578
10.1002/ente.202301139
10.1080/19392699.2020.1789973
ContentType Journal Article
Copyright 2025 Taylor & Francis Group, LLC 2025
2025 Taylor & Francis Group, LLC
Copyright_xml – notice: 2025 Taylor & Francis Group, LLC 2025
– notice: 2025 Taylor & Francis Group, LLC
DBID AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
DOI 10.1080/19392699.2025.2581178
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1939-2702
EndPage 3020
ExternalDocumentID 10_1080_19392699_2025_2581178
2581178
Genre Research Article
GrantInformation_xml – fundername: Key Research and Development Project of Liaoning Province
  grantid: 2024JH2/102400026
– fundername: Basic Research Program of Jiangsu
  grantid: BK20241636
– fundername: National Natural Science Foundation of China
  grantid: 52304309; 52504313
GroupedDBID .7F
.QJ
0BK
0R~
30N
4.4
5GY
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGFS
ACGOD
ACIWK
ACTIO
ADCVX
ADGTB
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFRAH
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
BLEHA
CCCUG
CE4
CS3
DKSSO
DU5
EAP
EBS
EDH
ESX
E~A
E~B
GTTXZ
H13
HF~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TNC
TTHFI
TUROJ
TUS
TWF
UT5
UU3
ZGOLN
~S~
AAYXX
CITATION
DGEBU
NX~
7SP
7TB
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c288t-c893504e8097e3721d9809471432a2f135ea9ff6b7d07f9790bdd0d7ca5ef0e03
IEDL.DBID TFW
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001604885800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1939-2699
IngestDate Tue Dec 02 12:10:56 EST 2025
Sat Nov 29 06:59:29 EST 2025
Tue Dec 02 04:10:29 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c288t-c893504e8097e3721d9809471432a2f135ea9ff6b7d07f9790bdd0d7ca5ef0e03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3278200709
PQPubID 105604
PageCount 28
ParticipantIDs crossref_primary_10_1080_19392699_2025_2581178
proquest_journals_3278200709
informaworld_taylorfrancis_310_1080_19392699_2025_2581178
PublicationCentury 2000
PublicationDate 12/02/2025
PublicationDateYYYYMMDD 2025-12-02
PublicationDate_xml – month: 12
  year: 2025
  text: 12/02/2025
  day: 02
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle International journal of coal preparation and utilization
PublicationYear 2025
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References e_1_3_2_20_1
e_1_3_2_21_1
e_1_3_2_22_1
e_1_3_2_23_1
e_1_3_2_24_1
e_1_3_2_25_1
e_1_3_2_26_1
e_1_3_2_16_1
e_1_3_2_9_1
e_1_3_2_17_1
e_1_3_2_8_1
e_1_3_2_18_1
e_1_3_2_7_1
e_1_3_2_19_1
e_1_3_2_2_1
e_1_3_2_10_1
e_1_3_2_11_1
e_1_3_2_6_1
e_1_3_2_12_1
e_1_3_2_5_1
e_1_3_2_13_1
e_1_3_2_4_1
e_1_3_2_14_1
e_1_3_2_3_1
e_1_3_2_15_1
References_xml – ident: e_1_3_2_6_1
  doi: 10.1080/19392699.2022.2139250
– ident: e_1_3_2_12_1
  doi: 10.1145/3318299.3318394
– ident: e_1_3_2_26_1
  doi: 10.1109/TII.2021.3092361
– ident: e_1_3_2_23_1
  doi: 10.1016/j.mineng.2005.12.010
– ident: e_1_3_2_2_1
  doi: 10.1016/j.powtec.2024.119866
– ident: e_1_3_2_7_1
  doi: 10.1016/S0967-0661(99)00187-2
– ident: e_1_3_2_22_1
  doi: 10.4028/www.scientific.net/AMR.524-527.1007
– ident: e_1_3_2_5_1
  doi: 10.3390/pr13082650
– ident: e_1_3_2_10_1
  doi: 10.1016/j.aca.2014.12.033
– ident: e_1_3_2_4_1
  doi: 10.1515/revce-2024-0023
– ident: e_1_3_2_18_1
  doi: 10.1162/15324430152748236
– ident: e_1_3_2_19_1
  doi: 10.1109/DDCLS49620.2020.9275224
– ident: e_1_3_2_24_1
  doi: 10.1109/CCDC62350.2024.10587915
– ident: e_1_3_2_21_1
  doi: 10.1080/19392699.2024.2412749
– ident: e_1_3_2_11_1
  doi: 10.1080/19392699.2024.2322701
– ident: e_1_3_2_9_1
  doi: 10.1080/19392699.2023.2301312
– ident: e_1_3_2_15_1
  doi: 10.1109/WI-IAT62293.2024.00142
– ident: e_1_3_2_20_1
  doi: 10.1016/j.ijmst.2018.06.005
– ident: e_1_3_2_17_1
  doi: 10.1080/19392699.2018.1455669
– ident: e_1_3_2_3_1
  doi: 10.1080/19392699.2024.2341966
– ident: e_1_3_2_14_1
  doi: 10.1109/TII.2024.3423487
– ident: e_1_3_2_13_1
  doi: 10.1080/19392699.2024.2330421
– ident: e_1_3_2_25_1
  doi: 10.1109/ICASSP48485.2024.10446578
– ident: e_1_3_2_8_1
  doi: 10.1002/ente.202301139
– ident: e_1_3_2_16_1
  doi: 10.1080/19392699.2020.1789973
SSID ssj0062194
Score 2.3529778
Snippet Accurate real-time monitoring of the ash content in flotation clean coal is pivotal for intelligent optimization and closed-loop control of the flotation...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Index Database
Publisher
StartPage 2993
SubjectTerms Accuracy
Alignment
clean coal
Closed loops
Coal
Coal flotation
Collinearity
Data integration
Feature extraction
Feedback control
Flotation
Fly ash
interpretable constructive algorithm
Machine learning
Monitoring
multi-timescale
multisource information fusion
Optimization
Predictions
Process variables
Real time
Regression models
X-ray fluorescence
Title Asynchronous multisource alignment-driven real-time online detection of ash content in flotation clean coal
URI https://www.tandfonline.com/doi/abs/10.1080/19392699.2025.2581178
https://www.proquest.com/docview/3278200709
Volume 45
WOSCitedRecordID wos001604885800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 1939-2702
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062194
  issn: 1939-2699
  databaseCode: TFW
  dateStart: 20080314
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQADb0R5yQOri-s8bI8VomJAFUMR3SLHD0BUCWpSJP49ZyeRWiHEAEuUDOdYvvPd2f7uM0JXWicG4rQjPtsl4CUtERAIwJaZyxUVsbKBxPWeTyZiNpMPLZqwamGVfg3tGqKI4Kv95FZ51SHiriHnkCyVvsyEJQOW-FpJX-4Lmb238en4qfPFKczH9lxZEi_S1fD81MpadFrjLv3mq0MAGu_-Q9f30E6bfeJRYy77aMMWB2h7hZPwEL2Nqs9Ce8rcclnhgDdsNvgxZOzPATtAzML7SAz55pz4y-lx0xdsbB2QXQUuHVbVC_ZAeBDArwV287I59cfwZwXPUs2P0OP4dnpzR9obGYhmQtREQ3aT0NgKKrkFdQ6NhNfY36HOFHPDKLFKOpfm3FDuJJc0N4YarlViHbU0Oka9oizsCcJpHlltho7GHJaoERexg8CpdGJNaoSI-2jQaSJ7b4g3smHLZ9qNYuZHMWtHsY_kqr6yOux4uOZ6kiz6Rfa8U27WzmEQYZ5LEFyiPP1D02doy38GBAw7R716sbQXaFN_gPYWl8FavwDXjud9
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5aBfXgW3ybg9domn0lxyIWxdpTRW9LmoeKZVfaKvjvncnuQkXEg16WhWWyIZPMTJJvviHk1JjEgp_2DKNdBlbSMQmOAOay8EPNZaxdIHHtZf2-fHhQs7kwCKvEPbSviCKCrcbFjYfRDSTuHIIOJVKFeSYiORMJJkvKebKQgK9FWN-ge99Y4xRWZH2zrBjKNFk8PzXzxT99YS_9Zq2DC-qu_Ufn18lqHYDSTjVjNsicKzbJygwt4RZ56Uw-CoOsueXbhAbIYXXGTyFofwzwAWbHaCYphJwjhvXpadUZat00gLsKWnqqJ08UsfAgQJ8L6kdldfFP4c8anqUebZO77uXg4orVRRmYEVJOmYEAJ-Gxk1xlDjTatgpeYyyjLrTw7ShxWnmfDjPLM68yxYfWcpsZnTjPHY92SKsoC7dLaDqMnLFtz-MMdqlRJmMPvlObxNnUShnvkbNGFflrxb2Rt2tK02YUcxzFvB7FPaJmFZZPw6GHryqU5NEvsoeNdvN6GYOIQDpBsIpq_w9Nn5Clq8FtL-9d928OyDJ-CoAYcUha0_GbOyKL5h00OT4OU_cTbmXrng
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5aRfTgW6xWzcFrNM2-kmNRi2IpPVTsbUnzULHslj4E_72T7C60iHjQy7KwTDZkJjOT5Ms3CF0qFWmI05a4bJeAlzSEQyAAW2Z2KCkPpfEkrp2k2-WDgeiVaMJpCat0a2hbEEV4X-0m91jbChF3DTmHYLFw10xYdMUid1eSr6I1T44FJt1vP1fOOIYJWR4sC-Jkqks8PzWzFJ6WyEu_OWsfgdo7_9D3XbRdpp-4VdjLHlox2T7aWiAlPEDvrelnphxnbj6fYg84LHb4MaTsLx48QPTEOUkMCeeIuOr0uOgL1mbmoV0Zzi2W01fskPAggN8ybEd5ceyP4c8SnrkcHaKn9l3_5p6UJRmIYpzPiIL0JqKh4VQkBvTZ1AJeQ1dEnUlmm0FkpLA2HiaaJlYkgg61pjpRMjKWGhocoVqWZ-YY4XgYGKWbloYJrFGDhIcWIqdUkdGx5jyso6tKE-m4YN5ImyWhaTWKqRvFtBzFOhKL-kpnfsvDFvVJ0uAX2Ual3LScxCDCHJkg-ERx8oemL9BG77addh66j6do033xaBjWQLXZZG7O0Lr6AEVOzr3hfgGRbOpC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Asynchronous+multisource+alignment-driven+real-time+online+detection+of+ash+content+in+flotation+clean+coal&rft.jtitle=International+journal+of+coal+preparation+and+utilization&rft.au=Wang%2C+Lanhao&rft.au=Liu%2C+Jiahui&rft.au=Dai%2C+Wei&rft.au=Gui%2C+Xiahui&rft.date=2025-12-02&rft.issn=1939-2699&rft.eissn=1939-2702&rft.spage=1&rft.epage=28&rft_id=info:doi/10.1080%2F19392699.2025.2581178&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_19392699_2025_2581178
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-2699&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-2699&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-2699&client=summon