Lebesgue-Type Inequalities for Quasi-greedy Bases
We show that, for quasi-greedy bases in real or complex Banach spaces, an optimal bound for the ratio between greedy N -term approximation ∥ x − G N x ∥ and the best N -term approximation σ N ( x ) is controlled by max{ μ ( N ), k N }, where μ ( N ) and k N are well-known constants that quantify the...
Uloženo v:
| Vydáno v: | Constructive approximation Ročník 38; číslo 3; s. 447 - 470 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Boston
Springer US
01.12.2013
|
| Témata: | |
| ISSN: | 0176-4276, 1432-0940 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We show that, for quasi-greedy bases in real or complex Banach spaces, an optimal bound for the ratio between greedy
N
-term approximation ∥
x
−
G
N
x
∥ and the best
N
-term approximation
σ
N
(
x
) is controlled by max{
μ
(
N
),
k
N
}, where
μ
(
N
) and
k
N
are well-known constants that quantify the democracy and conditionality of the basis. In particular, for democratic bases this bound is
O
(log
N
). We show with various examples that these bounds are actually attained. |
|---|---|
| ISSN: | 0176-4276 1432-0940 |
| DOI: | 10.1007/s00365-013-9209-z |