An exact penalty function method for nonlinear mixed discrete programming problems

In this paper, we consider a general class of nonlinear mixed discrete programming problems. By introducing continuous variables to replace the discrete variables, the problem is first transformed into an equivalent nonlinear continuous optimization problem subject to original constraints and additi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optimization letters Jg. 7; H. 1; S. 23 - 38
Hauptverfasser: Yu, Changjun, Teo, Kok Lay, Bai, Yanqin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer-Verlag 01.01.2013
Schlagworte:
ISSN:1862-4472, 1862-4480
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we consider a general class of nonlinear mixed discrete programming problems. By introducing continuous variables to replace the discrete variables, the problem is first transformed into an equivalent nonlinear continuous optimization problem subject to original constraints and additional linear and quadratic constraints. Then, an exact penalty function is employed to construct a sequence of unconstrained optimization problems, each of which can be solved effectively by unconstrained optimization techniques, such as conjugate gradient or quasi-Newton methods. It is shown that any local optimal solution of the unconstrained optimization problem is a local optimal solution of the transformed nonlinear constrained continuous optimization problem when the penalty parameter is sufficiently large. Numerical experiments are carried out to test the efficiency of the proposed method.
ISSN:1862-4472
1862-4480
DOI:10.1007/s11590-011-0391-2