Information-based branching schemes for binary linear mixed integer problems

Branching variable selection can greatly affect the effectiveness and efficiency of a branch-and-bound algorithm. Traditional approaches to branching variable selection rely on estimating the effect of the candidate variables on the objective function. We propose an approach which is empowered by ex...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Mathematical programming computation Ročník 1; číslo 4; s. 249 - 293
Hlavní autori: Kılınç Karzan, Fatma, Nemhauser, George L., Savelsbergh, Martin W. P.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer-Verlag 01.12.2009
Predmet:
ISSN:1867-2949, 1867-2957
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Branching variable selection can greatly affect the effectiveness and efficiency of a branch-and-bound algorithm. Traditional approaches to branching variable selection rely on estimating the effect of the candidate variables on the objective function. We propose an approach which is empowered by exploiting the information contained in a family of fathomed subproblems, collected beforehand from an incomplete branch-and-bound tree. In particular, we use this information to define new branching rules that reduce the risk of incurring inappropriate branchings. We provide computational results that demonstrate the effectiveness of the new branching rules on various benchmark instances.
ISSN:1867-2949
1867-2957
DOI:10.1007/s12532-009-0009-1