Global Fitting of the Response Surface via Estimating Multiple Contours of a Simulator

Computer simulators are widely used to understand complex physical systems in many areas such as aerospace, renewable energy, climate modelling, and manufacturing. One fundamental aspect of the study of computer simulators is known as experimental design, that is, how to select the input settings wh...

Full description

Saved in:
Bibliographic Details
Published in:Journal of statistical theory and practice Vol. 14; no. 1
Main Authors: Yang, F., Lin, C. Devon, Ranjan, P.
Format: Journal Article
Language:English
Published: Cham Springer International Publishing 01.03.2020
Subjects:
ISSN:1559-8608, 1559-8616
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Computer simulators are widely used to understand complex physical systems in many areas such as aerospace, renewable energy, climate modelling, and manufacturing. One fundamental aspect of the study of computer simulators is known as experimental design, that is, how to select the input settings where the computer simulator is run and the corresponding response is collected. Extra care should be taken in the selection process because computer simulators can be computationally expensive to run. The selection should acknowledge and achieve the goal of the analysis. This article focuses on the goal of producing more accurate prediction which is important for risk assessment and decision making. We propose two new methods of design approaches that sequentially select input settings to achieve this goal. The approaches make novel applications of simultaneous and sequential contour estimations. Numerical examples are employed to demonstrate the effectiveness of the proposed approaches.
AbstractList Computer simulators are widely used to understand complex physical systems in many areas such as aerospace, renewable energy, climate modelling, and manufacturing. One fundamental aspect of the study of computer simulators is known as experimental design, that is, how to select the input settings where the computer simulator is run and the corresponding response is collected. Extra care should be taken in the selection process because computer simulators can be computationally expensive to run. The selection should acknowledge and achieve the goal of the analysis. This article focuses on the goal of producing more accurate prediction which is important for risk assessment and decision making. We propose two new methods of design approaches that sequentially select input settings to achieve this goal. The approaches make novel applications of simultaneous and sequential contour estimations. Numerical examples are employed to demonstrate the effectiveness of the proposed approaches.
ArticleNumber 9
Author Ranjan, P.
Yang, F.
Lin, C. Devon
Author_xml – sequence: 1
  givenname: F.
  surname: Yang
  fullname: Yang, F.
  organization: College of Mathematics, Sichuan University
– sequence: 2
  givenname: C. Devon
  orcidid: 0000-0002-5027-7361
  surname: Lin
  fullname: Lin, C. Devon
  email: devon.lin@queensu.ca
  organization: Department of Mathematics and Statistics, Queen’s University
– sequence: 3
  givenname: P.
  surname: Ranjan
  fullname: Ranjan, P.
  organization: OM&QT Area, Indian Institute of Management Indore
BookMark eNp9kEFOwzAQRS1UJErhAOx8gYDtOHGyRFVbkIqQKLC1HGdcXKVxZTtI3B6HIhYsuviaWcybmf8v0aR3PSB0Q8ktJUTcBc4KWmdkFBEiI2doSouizqqSlpO_nlQX6DKEHSElJXk-Re-rzjWqw0sbo-232BkcPwC_QDi4PgDeDN4oDfjTKrwI0e7Vz9jT0EV76ADPXR_d4MMIKryx-6FT0fkrdG5UF-D6t87Q23LxOn_I1s-rx_n9OtOsqmKmdMEgN4VphObQNoKS1LeMG86Z4aYVwLg2VAC0JdRGaF1pWusiF6Y1rMlniB73au9C8GDkwacf_ZekRI7ByGMwkoxKwUiSGPGP0TYmW8mJV7Y7SbIjGdKVfgte7pL3Phk8AX0DDW57xg
CitedBy_id crossref_primary_10_1080_00224065_2023_2241680
crossref_primary_10_1007_s00366_021_01516_2
Cites_doi 10.1002/cjs.11156
10.1201/9781420034899
10.1198/TECH.2009.08040
10.1093/biomet/asv002
10.1214/17-AOS1648
10.1198/004017006000000228
10.1080/10618600.2018.1473778
10.1007/978-1-4757-3799-8
10.1016/j.jspi.2009.12.004
10.1007/978-1-4612-3818-8_32
10.1080/00401706.2014.881749
10.1111/j.1365-2966.2006.10519.x
10.1080/03610918208812265
10.1198/TECH.2009.08018
10.1198/004017008000000541
10.1007/s11222-010-9224-x
10.1198/TECH.2009.0015
10.1080/01621459.1991.10475138
10.1198/TECH.2010.09157
10.18637/jss.v064.i13
10.1080/00401706.2016.1211554
10.1080/00401706.1989.10488474
10.1080/15210607909379345
10.1080/01621459.1993.10476423
10.1016/0378-3758(90)90122-B
10.1198/016214508000000689
10.1016/0378-3758(94)00035-T
10.1214/ss/1177012413
ContentType Journal Article
Copyright Grace Scientific Publishing 2019
Copyright_xml – notice: Grace Scientific Publishing 2019
DBID AAYXX
CITATION
DOI 10.1007/s42519-019-0077-0
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1559-8616
ExternalDocumentID 10_1007_s42519_019_0077_0
GrantInformation_xml – fundername: University Postgraduate Programme
  funderid: http://dx.doi.org/10.13039/501100010907
– fundername: Natural Sciences and Engineering Research Council of Canada
  funderid: http://dx.doi.org/10.13039/501100000038
– fundername: Department of Science and Technology, Government of India
  grantid: EMR/2016/003332/MS
GroupedDBID -EM
.7F
0R~
4.4
406
8UJ
AACDK
AAHNG
AAJBT
AASML
AATNV
AAUYE
ABAKF
ABECU
ABFIM
ABFTV
ABJNI
ABKCH
ABMQK
ABPEM
ABTAI
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACMLO
ACOKC
ACPIV
ACTIO
ACZOJ
ADCVX
ADKNI
ADTPH
ADURQ
ADYFF
AEFQL
AEJRE
AEMSY
AESKC
AFBBN
AFQWF
AGDGC
AGJBK
AGMZJ
AGQEE
AIGIU
AIJEM
AILAN
AITGF
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AQRUH
AVBZW
AXYYD
BGNMA
CCCUG
CSCUP
DKSSO
DPUIP
EBLON
EBS
EJD
E~A
E~B
F5P
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
GTTXZ
H13
HZ~
H~P
IKXTQ
IWAJR
J9A
JZLTJ
J~4
KOV
LLZTM
M4Y
M4Z
NPVJJ
NQJWS
NU0
O9-
P2P
PT4
ROL
RSV
S-T
SJN
SJYHP
SNE
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
STPWE
TDBHL
TFL
TFT
TFW
TSG
UOJIU
UT5
UTJUX
UU3
VEKWB
VFIZW
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
AZQEC
BENPR
CCPQU
CITATION
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
PHGZM
PHGZT
ID FETCH-LOGICAL-c288t-ac52e3f5fb7c4edb7105fbd24f442f4fd7e24cf17eed6e9f7cc8c19c537fdf2b3
IEDL.DBID RSV
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000511595500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1559-8608
IngestDate Tue Nov 18 22:34:25 EST 2025
Sat Nov 29 01:41:36 EST 2025
Fri Feb 21 02:31:16 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Computer experiment
Gaussian process
Sequential design
Maximin design
Contour estimation
Latin hypercube
Space-filling
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c288t-ac52e3f5fb7c4edb7105fbd24f442f4fd7e24cf17eed6e9f7cc8c19c537fdf2b3
ORCID 0000-0002-5027-7361
ParticipantIDs crossref_primary_10_1007_s42519_019_0077_0
crossref_citationtrail_10_1007_s42519_019_0077_0
springer_journals_10_1007_s42519_019_0077_0
PublicationCentury 2000
PublicationDate 20200300
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 3
  year: 2020
  text: 20200300
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationTitle Journal of statistical theory and practice
PublicationTitleAbbrev J Stat Theory Pract
PublicationYear 2020
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
References Dancik G (2018) mlegp: maximum likelihood estimates of Gaussian processes. R package version 3.1.7
ZhangRLinCDRanjanPLocal approximate Gaussian process model for large-scale dynamic computer experimentsJ Comput Graph Stat20182779880710.1080/10618600.2018.1473778
TangBOrthogonal array-based Latin hypercubesJ Am Stat Assoc19938813921397124537510.1080/01621459.1993.10476423
RasmussenCEWilliamsCKIGaussian processes for machine learning2006Cambridge, MAThe MIT Press1177.68165
FangKTLiRSudjiantoADesign and modeling for computer experiments2005New YorkCRC Press10.1201/9781420034899
BowerRGBensonAJThe broken hierarchy of galaxy formationMon Not R Astron Soc200637064565510.1111/j.1365-2966.2006.10519.x
OwenABOrthogonal arrays for computer experiments, integration and visualizationStat Sin1992243945211879520822.62064
JohnsonMMooreLYlvisakerDMinimax and maximin distance designJ Stat Plan Inference199026131148107925810.1016/0378-3758(90)90122-B
MorrisMDMitchellTJExploratory designs for computer experimentsJ Stat Plan Inference19954338140210.1016/0378-3758(94)00035-T
GramacyRBLeeHKHBayesian treed Gaussian process models with an application to computer modelingJ Am Stat Assoc200810348311191130252883010.1198/016214508000000689
Ba S (2015) SLHD: maximin-distance (sliced) Latin hypercube designs. R package version 2.1-1
GramacyRBLeeHKHAdaptive design and analysis of supercomputer experimentsTechnometrics2009512130145266817010.1198/TECH.2009.0015
ChipmanHRanjanPWangWSequential design for computer experiments with a flexible Bayesian additive modelCan J Stat2012404663678299885510.1002/cjs.11156
LoeppkyJLMooreLMWilliamsBJBatch sequential designs for computer experimentsJ Stat Plan Inference2010140614521464259222410.1016/j.jspi.2009.12.004
McKayMDBeckmanRJConoverWJA comparison of three methods for selecting values of input variables in the analysis of output from a computer codeTechnometrics197921239455332520415.62011
GramacyRBLeeHKCases for the nugget in modeling computer experimentsStat Comput2012223713722290961710.1007/s11222-010-9224-x
JosephVRDasguptaTTuoRWuCJSequential exploration of complex surfaces using minimum energy designsTechnometrics2015576474331835010.1080/00401706.2014.881749
SacksJWelchWJMitchellTJWynnHPDesign and analysis of computer experimentsStat Sci19894409423104176510.1214/ss/1177012413
DetteHPepelyshevAGeneralized Latin hypercube design for computer experimentsTechnometrics201052421429278924910.1198/TECH.2010.09157
GreenbergDA numerical model investigation of tidal phenomena in the Bay of Fundy and Gulf of MaineMar Geod1979216118710.1080/15210607909379345
Gramacy RB, Taddy MA (2016) tgp: Bayesian treed Gaussian process models. R package version 2-4-14
LamCQNotzWISequential adaptive designs in computer experiments for response surface model fitStat Appl20086207233
RanjanPBinghamDMichailidisGSequential experiment design for contour estimation from complex computer codesTechnometrics2008504527541265565110.1198/004017008000000541(Errata (2011), Technometrics, 53:1, 109–110)
SacksJSchillerSBWelchWJDesigns for computer experimentsTechnometrics198931414799766910.1080/00401706.1989.10488474
SacksJSchillerSGuptaBergerSpatial designsStatistical decision theory and related topics IV1988New YorkSpringer38539910.1007/978-1-4612-3818-8_32
PalomoJPauloRGarcia-DonatoGSAVE: an r package for the statistical analysis of computer modelsJ Stat Softw2015641312310.18637/jss.v064.i13
Gu M, Palomo J, Berger J (2018) RobustGaSP: robust Gaussian stochastic process emulation. R package version 0.5.6
LinkletterCBinghamDHengartnerNHigdonDYeKQVariable selection for Gaussian process models in computer experimentsTechnometrics2006484478490232861710.1198/004017006000000228
CurrinCMitchellTMorrisMYlvisakerDBayesian prediction of deterministic functions, with applications to the design and analysis of computer experimentsJ Am Stat Assoc199186416953963114634310.1080/01621459.1991.10475138
SantnerTJWilliamsBJNotzWIThe design and analysis of computer experiments2003New YorkSpringer10.1007/978-1-4757-3799-8
LoeppkyJLSacksJWelchWJChoosing the sample size of a computer experiment: a practical guideTechnometrics2009514366376275647310.1198/TECH.2009.08040
JosephVRGulEBaSMaximum projection designs for computer experimentsBiometrika2015102371380337101010.1093/biomet/asv002
DengXLinCDLiuKWRoweRKAdditive Gaussian process for computer models with qualitative and quantitative factorsTechnometrics201759283292367796010.1080/00401706.2016.1211554
BayarriMJBergerJOCalderESDalbeyKLunagomezSPatraAKPitmanEBSpillerETWolpertRLUsing statistical and computer models to quantify volcanic hazardsTechnometrics200951402413275647610.1198/TECH.2009.08018
DixonLCWSzegoGPThe global optimization problem: an introductionTowards Glob Optim19782115
Roustant O, Ginsbourger D, Deville Y (2018) DiceKriging: kriging methods for computer experiments. R package version 1.5.6
MacDonald B, Ranjan P, Chipman H (2015) GPfit: an R package for Gaussian process model fitting using a new optimization algorithm. R package version 1.0-1
ImanRLConoverWJA distribution-free approach to inducing rank correlation among input variablesCommun Stat Part B Simul Comput19821131133410.1080/03610918208812265
JosephVRHungYOrthogonal-maximin Latin hypercube designsStat Sin20081817118624169071137.62050
Park JS (1991) Tuning complex computer codes to data and optimal designs. Unpublished Ph.D. thesis, University of Illinois, Champaign-Urbana
RB Gramacy (77_CR11) 2008; 103
C Linkletter (77_CR23) 2006; 48
M Johnson (77_CR18) 1990; 26
C Currin (77_CR5) 1991; 86
77_CR6
AB Owen (77_CR29) 1992; 2
J Palomo (77_CR30) 2015; 64
JL Loeppky (77_CR24) 2010; 140
77_CR1
D Greenberg (77_CR15) 1979; 2
MJ Bayarri (77_CR2) 2009; 51
77_CR26
RG Bower (77_CR3) 2006; 370
X Deng (77_CR7) 2017; 59
H Dette (77_CR8) 2010; 52
VR Joseph (77_CR20) 2015; 102
R Zhang (77_CR40) 2018; 27
RL Iman (77_CR17) 1982; 11
CQ Lam (77_CR22) 2008; 6
VR Joseph (77_CR21) 2008; 18
RB Gramacy (77_CR12) 2009; 51
LCW Dixon (77_CR9) 1978; 2
P Ranjan (77_CR33) 2008; 50
77_CR32
77_CR31
J Sacks (77_CR37) 1988
MD McKay (77_CR27) 1979; 21
J Sacks (77_CR38) 1989; 4
CE Rasmussen (77_CR34) 2006
VR Joseph (77_CR19) 2015; 57
B Tang (77_CR39) 1993; 88
JL Loeppky (77_CR25) 2009; 51
TJ Santner (77_CR35) 2003
KT Fang (77_CR10) 2005
77_CR16
RB Gramacy (77_CR13) 2012; 22
77_CR14
H Chipman (77_CR4) 2012; 40
MD Morris (77_CR28) 1995; 43
J Sacks (77_CR36) 1989; 31
References_xml – reference: Dancik G (2018) mlegp: maximum likelihood estimates of Gaussian processes. R package version 3.1.7
– reference: PalomoJPauloRGarcia-DonatoGSAVE: an r package for the statistical analysis of computer modelsJ Stat Softw2015641312310.18637/jss.v064.i13
– reference: BowerRGBensonAJThe broken hierarchy of galaxy formationMon Not R Astron Soc200637064565510.1111/j.1365-2966.2006.10519.x
– reference: DengXLinCDLiuKWRoweRKAdditive Gaussian process for computer models with qualitative and quantitative factorsTechnometrics201759283292367796010.1080/00401706.2016.1211554
– reference: GreenbergDA numerical model investigation of tidal phenomena in the Bay of Fundy and Gulf of MaineMar Geod1979216118710.1080/15210607909379345
– reference: DixonLCWSzegoGPThe global optimization problem: an introductionTowards Glob Optim19782115
– reference: Gu M, Palomo J, Berger J (2018) RobustGaSP: robust Gaussian stochastic process emulation. R package version 0.5.6
– reference: MorrisMDMitchellTJExploratory designs for computer experimentsJ Stat Plan Inference19954338140210.1016/0378-3758(94)00035-T
– reference: Park JS (1991) Tuning complex computer codes to data and optimal designs. Unpublished Ph.D. thesis, University of Illinois, Champaign-Urbana
– reference: LoeppkyJLMooreLMWilliamsBJBatch sequential designs for computer experimentsJ Stat Plan Inference2010140614521464259222410.1016/j.jspi.2009.12.004
– reference: JosephVRGulEBaSMaximum projection designs for computer experimentsBiometrika2015102371380337101010.1093/biomet/asv002
– reference: GramacyRBLeeHKCases for the nugget in modeling computer experimentsStat Comput2012223713722290961710.1007/s11222-010-9224-x
– reference: Roustant O, Ginsbourger D, Deville Y (2018) DiceKriging: kriging methods for computer experiments. R package version 1.5.6
– reference: ImanRLConoverWJA distribution-free approach to inducing rank correlation among input variablesCommun Stat Part B Simul Comput19821131133410.1080/03610918208812265
– reference: JosephVRDasguptaTTuoRWuCJSequential exploration of complex surfaces using minimum energy designsTechnometrics2015576474331835010.1080/00401706.2014.881749
– reference: TangBOrthogonal array-based Latin hypercubesJ Am Stat Assoc19938813921397124537510.1080/01621459.1993.10476423
– reference: OwenABOrthogonal arrays for computer experiments, integration and visualizationStat Sin1992243945211879520822.62064
– reference: GramacyRBLeeHKHBayesian treed Gaussian process models with an application to computer modelingJ Am Stat Assoc200810348311191130252883010.1198/016214508000000689
– reference: SantnerTJWilliamsBJNotzWIThe design and analysis of computer experiments2003New YorkSpringer10.1007/978-1-4757-3799-8
– reference: BayarriMJBergerJOCalderESDalbeyKLunagomezSPatraAKPitmanEBSpillerETWolpertRLUsing statistical and computer models to quantify volcanic hazardsTechnometrics200951402413275647610.1198/TECH.2009.08018
– reference: GramacyRBLeeHKHAdaptive design and analysis of supercomputer experimentsTechnometrics2009512130145266817010.1198/TECH.2009.0015
– reference: ZhangRLinCDRanjanPLocal approximate Gaussian process model for large-scale dynamic computer experimentsJ Comput Graph Stat20182779880710.1080/10618600.2018.1473778
– reference: RanjanPBinghamDMichailidisGSequential experiment design for contour estimation from complex computer codesTechnometrics2008504527541265565110.1198/004017008000000541(Errata (2011), Technometrics, 53:1, 109–110)
– reference: Gramacy RB, Taddy MA (2016) tgp: Bayesian treed Gaussian process models. R package version 2-4-14
– reference: JohnsonMMooreLYlvisakerDMinimax and maximin distance designJ Stat Plan Inference199026131148107925810.1016/0378-3758(90)90122-B
– reference: LamCQNotzWISequential adaptive designs in computer experiments for response surface model fitStat Appl20086207233
– reference: SacksJSchillerSGuptaBergerSpatial designsStatistical decision theory and related topics IV1988New YorkSpringer38539910.1007/978-1-4612-3818-8_32
– reference: SacksJWelchWJMitchellTJWynnHPDesign and analysis of computer experimentsStat Sci19894409423104176510.1214/ss/1177012413
– reference: CurrinCMitchellTMorrisMYlvisakerDBayesian prediction of deterministic functions, with applications to the design and analysis of computer experimentsJ Am Stat Assoc199186416953963114634310.1080/01621459.1991.10475138
– reference: MacDonald B, Ranjan P, Chipman H (2015) GPfit: an R package for Gaussian process model fitting using a new optimization algorithm. R package version 1.0-1
– reference: RasmussenCEWilliamsCKIGaussian processes for machine learning2006Cambridge, MAThe MIT Press1177.68165
– reference: DetteHPepelyshevAGeneralized Latin hypercube design for computer experimentsTechnometrics201052421429278924910.1198/TECH.2010.09157
– reference: Ba S (2015) SLHD: maximin-distance (sliced) Latin hypercube designs. R package version 2.1-1
– reference: JosephVRHungYOrthogonal-maximin Latin hypercube designsStat Sin20081817118624169071137.62050
– reference: McKayMDBeckmanRJConoverWJA comparison of three methods for selecting values of input variables in the analysis of output from a computer codeTechnometrics197921239455332520415.62011
– reference: LinkletterCBinghamDHengartnerNHigdonDYeKQVariable selection for Gaussian process models in computer experimentsTechnometrics2006484478490232861710.1198/004017006000000228
– reference: LoeppkyJLSacksJWelchWJChoosing the sample size of a computer experiment: a practical guideTechnometrics2009514366376275647310.1198/TECH.2009.08040
– reference: SacksJSchillerSBWelchWJDesigns for computer experimentsTechnometrics198931414799766910.1080/00401706.1989.10488474
– reference: ChipmanHRanjanPWangWSequential design for computer experiments with a flexible Bayesian additive modelCan J Stat2012404663678299885510.1002/cjs.11156
– reference: FangKTLiRSudjiantoADesign and modeling for computer experiments2005New YorkCRC Press10.1201/9781420034899
– volume: 40
  start-page: 663
  issue: 4
  year: 2012
  ident: 77_CR4
  publication-title: Can J Stat
  doi: 10.1002/cjs.11156
– volume: 18
  start-page: 171
  year: 2008
  ident: 77_CR21
  publication-title: Stat Sin
– volume-title: Design and modeling for computer experiments
  year: 2005
  ident: 77_CR10
  doi: 10.1201/9781420034899
– volume: 51
  start-page: 366
  issue: 4
  year: 2009
  ident: 77_CR25
  publication-title: Technometrics
  doi: 10.1198/TECH.2009.08040
– volume: 102
  start-page: 371
  year: 2015
  ident: 77_CR20
  publication-title: Biometrika
  doi: 10.1093/biomet/asv002
– ident: 77_CR6
– ident: 77_CR16
  doi: 10.1214/17-AOS1648
– ident: 77_CR32
– volume-title: Gaussian processes for machine learning
  year: 2006
  ident: 77_CR34
– volume: 48
  start-page: 478
  issue: 4
  year: 2006
  ident: 77_CR23
  publication-title: Technometrics
  doi: 10.1198/004017006000000228
– volume: 2
  start-page: 439
  year: 1992
  ident: 77_CR29
  publication-title: Stat Sin
– volume: 27
  start-page: 798
  year: 2018
  ident: 77_CR40
  publication-title: J Comput Graph Stat
  doi: 10.1080/10618600.2018.1473778
– volume-title: The design and analysis of computer experiments
  year: 2003
  ident: 77_CR35
  doi: 10.1007/978-1-4757-3799-8
– volume: 140
  start-page: 1452
  issue: 6
  year: 2010
  ident: 77_CR24
  publication-title: J Stat Plan Inference
  doi: 10.1016/j.jspi.2009.12.004
– start-page: 385
  volume-title: Statistical decision theory and related topics IV
  year: 1988
  ident: 77_CR37
  doi: 10.1007/978-1-4612-3818-8_32
– volume: 2
  start-page: 1
  year: 1978
  ident: 77_CR9
  publication-title: Towards Glob Optim
– volume: 57
  start-page: 64
  year: 2015
  ident: 77_CR19
  publication-title: Technometrics
  doi: 10.1080/00401706.2014.881749
– volume: 370
  start-page: 645
  year: 2006
  ident: 77_CR3
  publication-title: Mon Not R Astron Soc
  doi: 10.1111/j.1365-2966.2006.10519.x
– ident: 77_CR1
– volume: 11
  start-page: 311
  year: 1982
  ident: 77_CR17
  publication-title: Commun Stat Part B Simul Comput
  doi: 10.1080/03610918208812265
– volume: 51
  start-page: 402
  year: 2009
  ident: 77_CR2
  publication-title: Technometrics
  doi: 10.1198/TECH.2009.08018
– volume: 50
  start-page: 527
  issue: 4
  year: 2008
  ident: 77_CR33
  publication-title: Technometrics
  doi: 10.1198/004017008000000541
– ident: 77_CR14
– ident: 77_CR31
– volume: 22
  start-page: 713
  issue: 3
  year: 2012
  ident: 77_CR13
  publication-title: Stat Comput
  doi: 10.1007/s11222-010-9224-x
– volume: 51
  start-page: 130
  issue: 2
  year: 2009
  ident: 77_CR12
  publication-title: Technometrics
  doi: 10.1198/TECH.2009.0015
– volume: 21
  start-page: 239
  year: 1979
  ident: 77_CR27
  publication-title: Technometrics
– volume: 86
  start-page: 953
  issue: 416
  year: 1991
  ident: 77_CR5
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1991.10475138
– volume: 52
  start-page: 421
  year: 2010
  ident: 77_CR8
  publication-title: Technometrics
  doi: 10.1198/TECH.2010.09157
– volume: 64
  start-page: 1
  issue: 13
  year: 2015
  ident: 77_CR30
  publication-title: J Stat Softw
  doi: 10.18637/jss.v064.i13
– volume: 59
  start-page: 283
  year: 2017
  ident: 77_CR7
  publication-title: Technometrics
  doi: 10.1080/00401706.2016.1211554
– volume: 31
  start-page: 41
  year: 1989
  ident: 77_CR36
  publication-title: Technometrics
  doi: 10.1080/00401706.1989.10488474
– volume: 2
  start-page: 161
  year: 1979
  ident: 77_CR15
  publication-title: Mar Geod
  doi: 10.1080/15210607909379345
– volume: 88
  start-page: 1392
  year: 1993
  ident: 77_CR39
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1993.10476423
– volume: 26
  start-page: 131
  year: 1990
  ident: 77_CR18
  publication-title: J Stat Plan Inference
  doi: 10.1016/0378-3758(90)90122-B
– ident: 77_CR26
– volume: 103
  start-page: 1119
  issue: 483
  year: 2008
  ident: 77_CR11
  publication-title: J Am Stat Assoc
  doi: 10.1198/016214508000000689
– volume: 43
  start-page: 381
  year: 1995
  ident: 77_CR28
  publication-title: J Stat Plan Inference
  doi: 10.1016/0378-3758(94)00035-T
– volume: 4
  start-page: 409
  year: 1989
  ident: 77_CR38
  publication-title: Stat Sci
  doi: 10.1214/ss/1177012413
– volume: 6
  start-page: 207
  year: 2008
  ident: 77_CR22
  publication-title: Stat Appl
SSID ssj0061033
Score 2.1569085
Snippet Computer simulators are widely used to understand complex physical systems in many areas such as aerospace, renewable energy, climate modelling, and...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Analysis and Advanced Methodologies in the Design of Experiments
Mathematics and Statistics
Original Article
Probability Theory and Stochastic Processes
Statistical Theory and Methods
Statistics
Title Global Fitting of the Response Surface via Estimating Multiple Contours of a Simulator
URI https://link.springer.com/article/10.1007/s42519-019-0077-0
Volume 14
WOSCitedRecordID wos000511595500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Nature - Connect here FIRST to enable access
  customDbUrl:
  eissn: 1559-8616
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061033
  issn: 1559-8608
  databaseCode: RSV
  dateStart: 20070301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
– providerCode: PRVAWR
  databaseName: Taylor and Francis Online Journals
  customDbUrl:
  eissn: 1559-8616
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061033
  issn: 1559-8608
  databaseCode: TFW
  dateStart: 20070301
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5SPdSDj6pYX-TgSQls0-xm9yjS4sEWabX0VpJsBgraym7b3-8k-4CCCnoI7GEmu-Q1MzuT7yPkFhItuZYpEx2umbAKmIYAt7tS7i9_pMFzEUye5XAYT6fJS3mPO6-q3auUpD-p68tuwl2yxNAXWyAlwzh9F61d7PgaRuNJdfyiO-D54126jcVREFepzO-62DZG25lQb2D6h__6tCNyUPqT9KFYAMdkxy5aZH9Qg7HmLdJ0DmWBx3xCJgXIP-3PfcEzXQJFUToqSmUtHa8zUMbSzVzRHuq4TlBsUNYdUodmhe_MnaKi4_mHo_9aZqfkrd97fXxiJbcCMzyOV0yZkNsuhKClETbV6Gjgc8oFCMFBQCotFwY6Em1oZBOQxsSmk5iwKyEFrrtnpLFYLuw5oSiKXpsAzk0qEpXqJLJKKpmEFmOrQLZJUA3yzJTA447_4n1WQyb78ZsFrgUOe7xN7mqVzwJ14zfh-2pWZuUGzH-WvviT9CVpchdg-6KzK9JYZWt7TfbMBqctu_EL7wu3-tOb
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5SBevBR1Wszxw8KYFtmt3sHkVaKrZF2lp6W5JsAgVtZbft73eSfYCggh4Ce_gmu-Q1MzuTbxC6NZHkVPKEsBaVhGlhiDQebHch7F_-QBpXi2Da58NhOJtFL8U97qzMdi9Dku6kri67MXvJElxfaB7nBPz0bQYKyxLmj8bT8vgFc8DVj7fhNhIGXliGMr_r4qsy-hoJdQqme_CvTztE-4U9iR_yBXCEtvSigfYGFRlr1kB1a1DmfMzHaJqT_OPu3CU846XBAMWjPFVW4_E6NUJpvJkL3AEZ2wnABkXeIbZsVvDOzAoKPJ6_2_Jfy_QEvXY7k8ceKWorEEXDcEWE8qluG99IrphOJBga8JxQZhijhpmEa8qUaXHQoYGODFcqVK1I-W1uEkNl-xTVFsuFPkMYoGC1MUOpSlgkEhkFWnDBI1-Db-XxJvLKQY5VQTxu61-8xRVlshu_2LPNs9zjTXRXiXzkrBu_ge_LWYmLDZj9jD7_E_oG7fYmg37cfxo-X6A6tc62S0C7RLVVutZXaEdtYArTa7cIPwGtE9Z_
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kiujBR1Wszz14UkLT7SabHEVbFNtSrJbewr4GCpqWpO3vdzcvKKggHhZymNmEfWRndma-D6EbCAUjgimHtohwqObgCHDNdufc3vL7AjIugnGPDQbBZBIOC57TtMx2L0OSeU2DRWmKF825gmZV-EZtwaVxg01zGXOMz75JbR69dddH4_JXbEyDjEveht6cwHeDMqz5XRfrB9N6VDQ7bLr7__7MA7RX2Jn4Pl8Yh2hDx3W0269AWtM62rGGZo7TfITGOfg_7k6zRGg8A2xE8WueQqvxaJkAlxqvphx3jI7txIj1i3xEbFGuzDtTq8jxaPppacFmyTF673beHp6cgnPBkSQIFg6XHtFt8EAwSbUSxgAxz4pQoJQABcU0oRJazJytvg6BSRnIVii9NgMFRLRPUC2exfoUYSNqrDkKhEhFQ65E6GvOOAs9bXwulzWQWw54JAtAcsuL8RFVUMrZ-EWuba7FJG-g20plnqNx_CZ8V85QVGzM9Gfpsz9JX6Pt4WM36j0PXs7RDrE-eJaXdoFqi2SpL9GWXJkZTK6y9fgF8OHfYw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+Fitting+of+the+Response+Surface+via+Estimating+Multiple+Contours+of+a+Simulator&rft.jtitle=Journal+of+statistical+theory+and+practice&rft.au=Yang%2C+F.&rft.au=Lin%2C+C.+Devon&rft.au=Ranjan%2C+P.&rft.date=2020-03-01&rft.issn=1559-8608&rft.eissn=1559-8616&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1007%2Fs42519-019-0077-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s42519_019_0077_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1559-8608&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1559-8608&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1559-8608&client=summon