A novel hybrid technique to decompose in-plane thermoelastic displacement fields into thermal and structural displacement fields

Structural health monitoring techniques assess structural responses by retrieving total displacement fields encompassing thermal and structural displacement fields. However, techniques to decompose a total displacement field into individual displacement fields—thermal- and structural-load induced fi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Acta mechanica Ročník 233; číslo 9; s. 3747 - 3776
Hlavní autoři: Thube, Yogesh S., Gotkhindi, Tejas P.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Vienna Springer Vienna 01.09.2022
Springer
Springer Nature B.V
Témata:
ISSN:0001-5970, 1619-6937
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Structural health monitoring techniques assess structural responses by retrieving total displacement fields encompassing thermal and structural displacement fields. However, techniques to decompose a total displacement field into individual displacement fields—thermal- and structural-load induced fields—have not been explored. To address this research gap, the present work proposes and demonstrates a novel hybrid technique—coupling a low-fidelity FEM and an analytical technique formulated using complex variables. The technique incorporates partial coarse-mesh FEM boundary data with field variables expressions—presented as Laurent series—to compute unknown constants in the series. The technique is illustrated for thermoelastic problems including circular and elliptical rings and a plate with a hole. On the other hand, non-thermoelastic problems of practical utility—a special case of thermoelastic problems—are presented to demonstrate the versatility of the technique. The individual decomposed displacement fields are plotted as contour plots over the domains and are corroborated with high-fidelity FEM. L 2 norms indicate a very good correspondence for thermoelastic problems, indicating the efficacy of the technique. The non-thermoelastic cases show higher deviation but within reasonable limits. Subsequently, the extension of the technique to experiments and evaluation of the stress fields are briefly discussed.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0001-5970
1619-6937
DOI:10.1007/s00707-022-03298-0