Codifferential Calculus

In this paper, some exact calculus rules are obtained for calculating the coderivatives of the composition of two multivalued maps. Similar rules are displayed for sums. A crucial role is played by an intermediate set-valued map called the resolvent. We first establish inclusions for contingent, Fré...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Set-valued and variational analysis Ročník 19; číslo 4; s. 505 - 536
Hlavní autori: Li, Shengjie, Penot, Jean-Paul, Xue, Xiaowei
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Dordrecht Springer Netherlands 01.12.2011
Predmet:
ISSN:1877-0533, 1877-0541
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, some exact calculus rules are obtained for calculating the coderivatives of the composition of two multivalued maps. Similar rules are displayed for sums. A crucial role is played by an intermediate set-valued map called the resolvent. We first establish inclusions for contingent, Fréchet and limiting coderivatives. Combining them, we get equality rules. The qualification conditions we present are natural and less exacting than classical conditions.
ISSN:1877-0533
1877-0541
DOI:10.1007/s11228-010-0171-7