On Some Regularity Properties in Variational Analysis

Some properties, connected with recent generalizations of the classic notion of Lipschitz continuity for multifunctions, are investigated with reference to variational systems, that is to solution maps associated to parametrized generalized equations. The latter ones are a convenient framework to ad...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Set-Valued and Variational Analysis Ročník 17; číslo 4; s. 409 - 430
Hlavní autor: Uderzo, Amos
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht Springer Netherlands 01.12.2009
Témata:
ISSN:1877-0533, 1572-932X, 1877-0541
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Some properties, connected with recent generalizations of the classic notion of Lipschitz continuity for multifunctions, are investigated with reference to variational systems, that is to solution maps associated to parametrized generalized equations. The latter ones are a convenient framework to address several questions, mainly related to the stability and sensitivity analysis, arising in mathematical programming, optimal control, equilibrium and variational inequality theory. Global and local criteria for metric regularity and Lipschitz-likeness of variational systems are obtained. Some applications to the exact penalization of mathematical programs with equilibrium constraints and to the Lipschitzian stability of fixed points for multivalued contractions are then considered.
ISSN:1877-0533
1572-932X
1877-0541
DOI:10.1007/s11228-009-0121-4