A complexity dichotomy and a new boundary class for the dominating set problem
We study the computational complexity of the dominating set problem for hereditary graph classes, i.e., classes of simple unlabeled graphs closed under deletion of vertices. Every hereditary class can be defined by a set of its forbidden induced subgraphs. There are numerous open cases for the compl...
Saved in:
| Published in: | Journal of combinatorial optimization Vol. 32; no. 1; pp. 226 - 243 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.07.2016
|
| Subjects: | |
| ISSN: | 1382-6905, 1573-2886 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We study the computational complexity of the dominating set problem for hereditary graph classes, i.e., classes of simple unlabeled graphs closed under deletion of vertices. Every hereditary class can be defined by a set of its forbidden induced subgraphs. There are numerous open cases for the complexity of the problem even for hereditary classes with small forbidden structures. We completely determine the complexity of the problem for classes defined by forbidding a five-vertex path and any set of fragments with at most five vertices. Additionally, we also prove polynomial-time solvability of the problem for some two classes of a similar type. The notion of a boundary class is a helpful tool for analyzing the computational complexity of graph problems in the family of hereditary classes. Three boundary classes were known for the dominating set problem prior to this paper. We present a new boundary class for it. |
|---|---|
| AbstractList | We study the computational complexity of the dominating set problem for hereditary graph classes, i.e., classes of simple unlabeled graphs closed under deletion of vertices. Every hereditary class can be defined by a set of its forbidden induced subgraphs. There are numerous open cases for the complexity of the problem even for hereditary classes with small forbidden structures. We completely determine the complexity of the problem for classes defined by forbidding a five-vertex path and any set of fragments with at most five vertices. Additionally, we also prove polynomial-time solvability of the problem for some two classes of a similar type. The notion of a boundary class is a helpful tool for analyzing the computational complexity of graph problems in the family of hereditary classes. Three boundary classes were known for the dominating set problem prior to this paper. We present a new boundary class for it. |
| Author | Malyshev, D. S. |
| Author_xml | – sequence: 1 givenname: D. S. surname: Malyshev fullname: Malyshev, D. S. email: dsmalyshev@rambler.ru, dmalishev@hse.ru organization: National Research University Higher School of Economics |
| BookMark | eNp9kMtOAjEUhhuDiYA-gLu-QLW3mbZLQrwlRDe6bjqdDgyZaUlbovD0luDKBavzL8538p9vBiY-eAfAPcEPBGPxmAiWQiJMKqSkoOh4BaakEgxRKetJyUxSVCtc3YBZSluMccl8Ct4X0IZxN7ifPh9g29tNyGE8QONbaKB337AJe9-aeIB2MCnBLkSYNw62Yey9yb1fw-Qy3MXQDG68BdedGZK7-5tz8PX89Ll8RauPl7flYoVs6ZORJC2tGSeKElPVpHHKdVQ2naqow5I7YQ0XplZdbZiynHJWSyda1kguleMNmwNxvmtjSCm6Tts-lzbB52j6QROsT1r0WYsuWvRJiz4Wkvwjd7Efy38XGXpmUtn1axf1NuyjLw9egH4BEvV4Og |
| CitedBy_id | crossref_primary_10_1016_j_tcs_2017_06_012 crossref_primary_10_1002_jgt_23011 crossref_primary_10_1007_s10898_022_01165_9 crossref_primary_10_1007_s11590_021_01744_x crossref_primary_10_1007_s11590_015_0985_1 crossref_primary_10_1002_net_22232 crossref_primary_10_1134_S0001434625010067 crossref_primary_10_1134_S1990478923010039 crossref_primary_10_1137_20M1352119 crossref_primary_10_3103_S0278641919010084 crossref_primary_10_4213_mzm14308 |
| Cites_doi | 10.1016/j.disc.2004.04.010 10.1016/j.tcs.2007.09.013 10.1007/s00224-004-1154-6 10.1016/S0167-5060(08)71047-1 10.1007/s002249910009 10.1016/j.tcs.2011.10.005 10.1016/j.dam.2004.07.006 10.1016/S0166-218X(03)00387-1 10.1016/S0166-218X(99)00128-6 10.1016/0020-0190(84)90126-1 10.1016/j.dam.2015.02.015 10.1007/978-3-642-34611-8_7 10.1007/3-540-45477-2_23 10.1007/978-3-319-12691-3_20 10.1137/0138030 10.1017/S0963548307008814 10.1016/j.dam.2012.08.022 10.1016/j.dam.2014.08.008 10.1007/BF02352694 10.1016/j.dam.2013.10.010 10.1137/1.9781611973402.43 10.1134/S1990478914020112 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media New York 2015 |
| Copyright_xml | – notice: Springer Science+Business Media New York 2015 |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s10878-015-9872-z |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 1573-2886 |
| EndPage | 243 |
| ExternalDocumentID | 10_1007_s10878_015_9872_z |
| GroupedDBID | -5D -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 29K 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BDATZ BGNMA BSONS CAG COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P P9R PF0 PT4 PT5 QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7X Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA AZQEC BENPR BGLVJ CCPQU CITATION DWQXO GNUQQ HCIFZ M2P M7S PHGZM PHGZT PQGLB PTHSS |
| ID | FETCH-LOGICAL-c288t-81d26341921a561be9ef28bf952e084e7ca47a69f6a39c424368e7d3b8489e4b3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000379033200014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1382-6905 |
| IngestDate | Tue Nov 18 21:22:59 EST 2025 Sat Nov 29 04:54:19 EST 2025 Fri Feb 21 02:33:44 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Boundary class Polynomial-time algorithm Dominating set Computational complexity |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c288t-81d26341921a561be9ef28bf952e084e7ca47a69f6a39c424368e7d3b8489e4b3 |
| PageCount | 18 |
| ParticipantIDs | crossref_citationtrail_10_1007_s10878_015_9872_z crossref_primary_10_1007_s10878_015_9872_z springer_journals_10_1007_s10878_015_9872_z |
| PublicationCentury | 2000 |
| PublicationDate | 20160700 2016-7-00 |
| PublicationDateYYYYMMDD | 2016-07-01 |
| PublicationDate_xml | – month: 7 year: 2016 text: 20160700 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Journal of combinatorial optimization |
| PublicationTitleAbbrev | J Comb Optim |
| PublicationYear | 2016 |
| Publisher | Springer US |
| Publisher_xml | – name: Springer US |
| References | AbouEisha H, Hussain S, Lozin V, Monnot J, Ries B (2014) A dichotomy for upper domination in monogenic classes. In: Combinatorial optimization and applications. Lecture notes in computer science, vol 8881. Springer, pp 258–267 AlekseevVKorobitsynDLozinVBoundary classes of graphs for the dominating set problemDiscret Math20042851–316207483510.1016/j.disc.2004.04.0101121.05081 ClarkBColbournCJohnsonDUnit disk graphsAnn Discret Math199048165177108856910.1016/S0167-5060(08)71047-10739.05079 AlekseevVA polynomial algorithm for finding the largest independent sets in fork-free graphsDiskretn Analiz i Issled Oper Ser 11999643190931.05078[in russian] LozinVMoscaRIndependent sets in extensions of 2K2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2K_2$$\end{document}-free graphsDiscret Appl Math20041461 7480211223710.1016/j.dam.2004.07.0061087.90080 BrandstädtADraganFLeH-OMoscaRNew graph classes of bounded clique-widthTheory Comput Syst2005385623645215693910.1007/s00224-004-1154-61084.68088 MalyshevDThe complexity of the edge 3-colorability problem for graphs without two induced fragments each on at most six verticesSib Electron Math Rep2014118118221326.05047 KratschDDomination and total domination in asteroidal triple-free graphsDiscret Appl Math2000991–3111123174382710.1016/S0166-218X(99)00128-60943.05063 Lokshtantov D, Vatshelle M, Villanger Y (2014) Independent set in P5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_5$$\end{document}-free graphs in polynomial time. In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, pp 570–581 GolovachPPaulusmaDList coloring in the absence of two subgraphsDiscret Appl Math2014166123130316316610.1016/j.dam.2013.10.0101283.05096 KorobitsynDOn the complexity of domination number determination in monogenic classes of graphsDiscret Math Appl1992221911991084070 MalyshevDClasses of graphs critical for the edge list-ranking problemJ Appl Ind Math201482 245255318526410.1134/S1990478914020112 LozinVBoundary classes of planar graphsComb Probab Comput2008172287295239635410.1017/S09635483070088141166.05016 BroersmaHGolovachPPaulusmaDSongJUpdating the complexity status of coloring graphs without a fixed induced linear forestTheor Comput Sci20124141919289657910.1016/j.tcs.2011.10.0051234.68129 Graphs: 5-vertices. Information system on graph classes and their inclusions. http://www.graphclasses.org/smallgraphs.html#nodes5. Accessed 27 Jan 2015 Graphclass: AT-free. Information system on graph classes and their inclusions. http://www.graphclasses.org/classes/gc_61.html. Accessed 27 Jan 2015 Malyshev D (2013) The complexity of the 3-colorability problem in the absence of a pair of small forbidden induced subgraphs. Discret Math (submitted) BertossiADominating sets for split and bipartite graphsInform Process Lett1984191374076162310.1016/0020-0190(84)90126-10539.68058 AlekseevVOn easy and hard hereditary classes of graphs with respect to the independent set problemDiscret Appl Math20031321–31726202426110.1016/S0166-218X(03)00387-11029.05140 BacsóGTuzaZDominating cliques in P5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_5$$\end{document}-free graphsPeriod Math Hung19902130330810.1007/BF023526940746.05065 ZverovichIThe domination number of (Kp,P5)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(K_p, P_5)$$\end{document}-free graphsAustralas J Comb2003279510019553901022.05060 Alekseev V (1983) On the local restrictions effect on the complexity of finding the graph independence number. In: Combinatorial-algebraic methods in applied mathematics. Gorkiy University Press, Gorkiy, pp 3–13 [in russian] GolovachPPaulusmaDRiesBColoring graphs characterized by a forbidden subgraphDiscret Appl Math20151801101110328069810.1016/j.dam.2014.08.0081303.05061 Schweitzer P (2014) Towards an isomorphism dichotomy for hereditary graph classes. arXiv, arXiv:1411.1977 YannakakisMGavrilFEdge dominating sets in graphsSIAM J Appl Math198038336437257942410.1137/01380300455.05047 CourcelleBMakowskyJRoticsULinear time optimization problems on graphs of bounded clique widthTheory Comput Syst2000332125150173964410.1007/s0022499100091009.68102 Problem: Domination. Information system on graph classes and their inclusions. http://www.graphclasses.org/classes/problem_Domination.html. Accessed 27 Jan 2015 Kral’DKratochvilJTuzaZWoegingerGComplexity of coloring graphs without forbidden induced subgraphsLect. Notes Comput Sci20012204254262190563710.1007/3-540-45477-2_231042.68639 GolovachPPaulusmaDSongJ4-coloring H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H$$\end{document}-free graphs when H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H$$\end{document} is smallDiscret Appl Math20131611–2140150297335710.1016/j.dam.2012.08.0221259.05061 AlekseevVBoliacRKorobitsynDLozinVNP-hard graph problems and boundary classes of graphsTheor Comput Sci20073891–2219236236337410.1016/j.tcs.2007.09.0131143.68058 Lozin V, Malyshev D (2015) Vertex coloring of graphs with few obstructions. Discret Appl Math. doi:10.1016/j.dam.2015.02.015 GareyMJohnsonDComputers and intractability: a guide to the theory of NP-completeness1979New YorkFreeman0411.680391979 KratschSSchweitzerPGraph isomorphism for graph classes characterized by two forbidden induced subgraphsLect Notes Comput Sci201275513445304012510.1007/978-3-642-34611-8_706102415 D Malyshev (9872_CR29) 2014; 8 M Yannakakis (9872_CR32) 1980; 38 V Lozin (9872_CR24) 2008; 17 P Golovach (9872_CR14) 2014; 166 9872_CR30 9872_CR31 G Bacsó (9872_CR7) 1990; 21 9872_CR2 9872_CR1 9872_CR18 9872_CR17 B Courcelle (9872_CR12) 2000; 33 A Brandstädt (9872_CR9) 2005; 38 D Malyshev (9872_CR28) 2014; 11 I Zverovich (9872_CR33) 2003; 27 D Kratsch (9872_CR21) 2000; 99 B Clark (9872_CR11) 1990; 48 V Lozin (9872_CR26) 2004; 146 V Alekseev (9872_CR3) 1999; 6 V Alekseev (9872_CR5) 2007; 389 M Garey (9872_CR13) 1979 P Golovach (9872_CR16) 2013; 161 V Alekseev (9872_CR4) 2003; 132 V Alekseev (9872_CR6) 2004; 285 9872_CR23 9872_CR25 H Broersma (9872_CR10) 2012; 414 P Golovach (9872_CR15) 2015; 180 S Kratsch (9872_CR22) 2012; 7551 9872_CR27 D Kral (9872_CR20) 2001; 2204 D Korobitsyn (9872_CR19) 1992; 2 A Bertossi (9872_CR8) 1984; 19 |
| References_xml | – reference: BrandstädtADraganFLeH-OMoscaRNew graph classes of bounded clique-widthTheory Comput Syst2005385623645215693910.1007/s00224-004-1154-61084.68088 – reference: BroersmaHGolovachPPaulusmaDSongJUpdating the complexity status of coloring graphs without a fixed induced linear forestTheor Comput Sci20124141919289657910.1016/j.tcs.2011.10.0051234.68129 – reference: Graphs: 5-vertices. Information system on graph classes and their inclusions. http://www.graphclasses.org/smallgraphs.html#nodes5. Accessed 27 Jan 2015 – reference: KratschSSchweitzerPGraph isomorphism for graph classes characterized by two forbidden induced subgraphsLect Notes Comput Sci201275513445304012510.1007/978-3-642-34611-8_706102415 – reference: ClarkBColbournCJohnsonDUnit disk graphsAnn Discret Math199048165177108856910.1016/S0167-5060(08)71047-10739.05079 – reference: Alekseev V (1983) On the local restrictions effect on the complexity of finding the graph independence number. In: Combinatorial-algebraic methods in applied mathematics. Gorkiy University Press, Gorkiy, pp 3–13 [in russian] – reference: YannakakisMGavrilFEdge dominating sets in graphsSIAM J Appl Math198038336437257942410.1137/01380300455.05047 – reference: Schweitzer P (2014) Towards an isomorphism dichotomy for hereditary graph classes. arXiv, arXiv:1411.1977 – reference: Kral’DKratochvilJTuzaZWoegingerGComplexity of coloring graphs without forbidden induced subgraphsLect. Notes Comput Sci20012204254262190563710.1007/3-540-45477-2_231042.68639 – reference: AbouEisha H, Hussain S, Lozin V, Monnot J, Ries B (2014) A dichotomy for upper domination in monogenic classes. In: Combinatorial optimization and applications. Lecture notes in computer science, vol 8881. Springer, pp 258–267 – reference: AlekseevVOn easy and hard hereditary classes of graphs with respect to the independent set problemDiscret Appl Math20031321–31726202426110.1016/S0166-218X(03)00387-11029.05140 – reference: KorobitsynDOn the complexity of domination number determination in monogenic classes of graphsDiscret Math Appl1992221911991084070 – reference: Malyshev D (2013) The complexity of the 3-colorability problem in the absence of a pair of small forbidden induced subgraphs. Discret Math (submitted) – reference: GolovachPPaulusmaDRiesBColoring graphs characterized by a forbidden subgraphDiscret Appl Math20151801101110328069810.1016/j.dam.2014.08.0081303.05061 – reference: LozinVBoundary classes of planar graphsComb Probab Comput2008172287295239635410.1017/S09635483070088141166.05016 – reference: GolovachPPaulusmaDList coloring in the absence of two subgraphsDiscret Appl Math2014166123130316316610.1016/j.dam.2013.10.0101283.05096 – reference: Graphclass: AT-free. Information system on graph classes and their inclusions. http://www.graphclasses.org/classes/gc_61.html. Accessed 27 Jan 2015 – reference: BertossiADominating sets for split and bipartite graphsInform Process Lett1984191374076162310.1016/0020-0190(84)90126-10539.68058 – reference: Lokshtantov D, Vatshelle M, Villanger Y (2014) Independent set in P5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_5$$\end{document}-free graphs in polynomial time. In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, pp 570–581 – reference: LozinVMoscaRIndependent sets in extensions of 2K2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2K_2$$\end{document}-free graphsDiscret Appl Math20041461 7480211223710.1016/j.dam.2004.07.0061087.90080 – reference: GareyMJohnsonDComputers and intractability: a guide to the theory of NP-completeness1979New YorkFreeman0411.680391979 – reference: MalyshevDThe complexity of the edge 3-colorability problem for graphs without two induced fragments each on at most six verticesSib Electron Math Rep2014118118221326.05047 – reference: GolovachPPaulusmaDSongJ4-coloring H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H$$\end{document}-free graphs when H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H$$\end{document} is smallDiscret Appl Math20131611–2140150297335710.1016/j.dam.2012.08.0221259.05061 – reference: KratschDDomination and total domination in asteroidal triple-free graphsDiscret Appl Math2000991–3111123174382710.1016/S0166-218X(99)00128-60943.05063 – reference: ZverovichIThe domination number of (Kp,P5)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(K_p, P_5)$$\end{document}-free graphsAustralas J Comb2003279510019553901022.05060 – reference: Lozin V, Malyshev D (2015) Vertex coloring of graphs with few obstructions. Discret Appl Math. doi:10.1016/j.dam.2015.02.015 – reference: AlekseevVA polynomial algorithm for finding the largest independent sets in fork-free graphsDiskretn Analiz i Issled Oper Ser 11999643190931.05078[in russian] – reference: AlekseevVKorobitsynDLozinVBoundary classes of graphs for the dominating set problemDiscret Math20042851–316207483510.1016/j.disc.2004.04.0101121.05081 – reference: CourcelleBMakowskyJRoticsULinear time optimization problems on graphs of bounded clique widthTheory Comput Syst2000332125150173964410.1007/s0022499100091009.68102 – reference: AlekseevVBoliacRKorobitsynDLozinVNP-hard graph problems and boundary classes of graphsTheor Comput Sci20073891–2219236236337410.1016/j.tcs.2007.09.0131143.68058 – reference: Problem: Domination. Information system on graph classes and their inclusions. http://www.graphclasses.org/classes/problem_Domination.html. Accessed 27 Jan 2015 – reference: BacsóGTuzaZDominating cliques in P5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_5$$\end{document}-free graphsPeriod Math Hung19902130330810.1007/BF023526940746.05065 – reference: MalyshevDClasses of graphs critical for the edge list-ranking problemJ Appl Ind Math201482 245255318526410.1134/S1990478914020112 – volume: 11 start-page: 811 year: 2014 ident: 9872_CR28 publication-title: Sib Electron Math Rep – volume: 285 start-page: 1 issue: 1–3 year: 2004 ident: 9872_CR6 publication-title: Discret Math doi: 10.1016/j.disc.2004.04.010 – volume: 389 start-page: 219 issue: 1–2 year: 2007 ident: 9872_CR5 publication-title: Theor Comput Sci doi: 10.1016/j.tcs.2007.09.013 – volume: 38 start-page: 623 issue: 5 year: 2005 ident: 9872_CR9 publication-title: Theory Comput Syst doi: 10.1007/s00224-004-1154-6 – volume: 48 start-page: 165 year: 1990 ident: 9872_CR11 publication-title: Ann Discret Math doi: 10.1016/S0167-5060(08)71047-1 – volume: 33 start-page: 125 issue: 2 year: 2000 ident: 9872_CR12 publication-title: Theory Comput Syst doi: 10.1007/s002249910009 – ident: 9872_CR30 – volume: 414 start-page: 9 issue: 1 year: 2012 ident: 9872_CR10 publication-title: Theor Comput Sci doi: 10.1016/j.tcs.2011.10.005 – volume: 146 start-page: 74 issue: 1 year: 2004 ident: 9872_CR26 publication-title: Discret Appl Math doi: 10.1016/j.dam.2004.07.006 – volume: 132 start-page: 17 issue: 1–3 year: 2003 ident: 9872_CR4 publication-title: Discret Appl Math doi: 10.1016/S0166-218X(03)00387-1 – volume: 99 start-page: 111 issue: 1–3 year: 2000 ident: 9872_CR21 publication-title: Discret Appl Math doi: 10.1016/S0166-218X(99)00128-6 – ident: 9872_CR18 – volume: 19 start-page: 37 issue: 1 year: 1984 ident: 9872_CR8 publication-title: Inform Process Lett doi: 10.1016/0020-0190(84)90126-1 – ident: 9872_CR2 – ident: 9872_CR25 doi: 10.1016/j.dam.2015.02.015 – ident: 9872_CR31 – volume: 6 start-page: 3 issue: 4 year: 1999 ident: 9872_CR3 publication-title: Diskretn Analiz i Issled Oper Ser 1 – volume: 7551 start-page: 34 year: 2012 ident: 9872_CR22 publication-title: Lect Notes Comput Sci doi: 10.1007/978-3-642-34611-8_7 – volume: 2204 start-page: 254 year: 2001 ident: 9872_CR20 publication-title: Lect. Notes Comput Sci doi: 10.1007/3-540-45477-2_23 – ident: 9872_CR1 doi: 10.1007/978-3-319-12691-3_20 – ident: 9872_CR27 – volume: 38 start-page: 364 issue: 3 year: 1980 ident: 9872_CR32 publication-title: SIAM J Appl Math doi: 10.1137/0138030 – volume: 2 start-page: 191 issue: 2 year: 1992 ident: 9872_CR19 publication-title: Discret Math Appl – volume: 17 start-page: 287 issue: 2 year: 2008 ident: 9872_CR24 publication-title: Comb Probab Comput doi: 10.1017/S0963548307008814 – ident: 9872_CR17 – volume: 161 start-page: 140 issue: 1–2 year: 2013 ident: 9872_CR16 publication-title: Discret Appl Math doi: 10.1016/j.dam.2012.08.022 – volume: 180 start-page: 101 issue: 1 year: 2015 ident: 9872_CR15 publication-title: Discret Appl Math doi: 10.1016/j.dam.2014.08.008 – volume: 21 start-page: 303 year: 1990 ident: 9872_CR7 publication-title: Period Math Hung doi: 10.1007/BF02352694 – volume: 27 start-page: 95 year: 2003 ident: 9872_CR33 publication-title: Australas J Comb – volume: 166 start-page: 123 year: 2014 ident: 9872_CR14 publication-title: Discret Appl Math doi: 10.1016/j.dam.2013.10.010 – ident: 9872_CR23 doi: 10.1137/1.9781611973402.43 – volume-title: Computers and intractability: a guide to the theory of NP-completeness year: 1979 ident: 9872_CR13 – volume: 8 start-page: 245 issue: 2 year: 2014 ident: 9872_CR29 publication-title: J Appl Ind Math doi: 10.1134/S1990478914020112 |
| SSID | ssj0009054 |
| Score | 2.126028 |
| Snippet | We study the computational complexity of the dominating set problem for hereditary graph classes, i.e., classes of simple unlabeled graphs closed under... |
| SourceID | crossref springer |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 226 |
| SubjectTerms | Combinatorics Convex and Discrete Geometry Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Operations Research/Decision Theory Optimization Theory of Computation |
| Title | A complexity dichotomy and a new boundary class for the dominating set problem |
| URI | https://link.springer.com/article/10.1007/s10878-015-9872-z |
| Volume | 32 |
| WOSCitedRecordID | wos000379033200014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-2886 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009054 issn: 1382-6905 databaseCode: RSV dateStart: 19970301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB509aAH3-L6IgdPSqGmbR7HRVy8uIgv9laSNIUF7cq2iru_3kkf-wAV9DiQhDJJOt8wk-8DOOPMchNhmiq5Tr1QJQyvFJomkqlmxjHE-aXYBO_1RL8v7-p33HnT7d6UJMs_9dxjN-HYYC8jD_Nk6k2WYQWjnXB6DfcPzzOmXT-qlGwROmLqFzWlzO-WWAxGi5XQMsB0N__1aVuwUeNJ0qkOwDYs2WwH1udYBtG6nVKz5rvQ65Cyjdx-Iv4mycC9wRq-jonKEqIIgmyiS6Wl0ZgYh6wJolqC80kydF0zrkua5LYgtRLNHjx1rx-vbrxaVMEzVIjCQ3xKmSNxo5cKsZO20qZU6FRG1PoixJ1TIVdMpkwF0oTUMdRbngRahELaUAf70MqGmT0AIhIbKAR0vkpt6GspjRHMOptzx9rcBr_xbmxqxnEnfPESz7iSneNidFzsHBdP2nA-nfJW0W38Nvii2Y64vnn5z6MP_zT6CNYQGrGqMfcYWsXo3Z7AqvkoBvnotDxxX-fO0P8 |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZSwMxEA5aBfXBW6xnHnxSFrZ75HgsYqnYLqJV-rYk2SwUdCvdVWx_vZM9eoAK-jgwCcsk2fmGmfkGoQtKNFU-hKmcytjyRETgSYGofB5LogxDnJ0Pm6BBwPp9fl_2cadVtXuVksz_1HPNbsywwTZ8C-Jkx5osoxUPHJYhzH94fJ4x7dp-MckWoCOEfn6Vyvxui0VntJgJzR1Ma-tfn7aNNks8iZvFBdhBSzrZRRtzLIMgdafUrOkeCpo4LyPXn4C_cTQwPVjD1zEWSYQFBpCNZT5paTTGyiBrDKgWw3ocDU3VjKmSxqnOcDmJZh89tW56122rHKpgKYexzAJ86hBD4uY0BGAnqbmOHSZj7jvaZh6cnPCoIDwmwuXKcwxDvaaRK5nHuPake4BqyTDRhwizSLsCAJ0tYu3ZknOlGNFGptSwNteRXVk3VCXjuBl88RLOuJKN4UIwXGgMF07q6HK65K2g2_hN-ao6jrB8eenP2kd_0j5Ha-1etxN2boO7Y7QOMIkURbonqJaN3vUpWlUf2SAdneW37wu9VdPj |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA46RfTBuzivefBJKevatEkehzoUtQy8sLeSpCkMtBtrFbdf70kvu4AK4uOBk1JOEvIdzjnfh9AZ9TVVHqSpnMrYIiLy4UqBqTweS18Zhjg7F5ugQcC6Xd4pdU7Tqtu9KkkWMw2GpSnJGoMobswMvjHDDNv0LMiZHWu8iJaI6aM36frjy5R11_YKVVuAkZAGelVZ87tPzD9M81XR_LFpb_z7NzfReokzcas4GFtoQSfbaG2GfRCshwlla7qDghbO28v1J-ByHPXMbFb_bYRFEmGBAXxjmSswDUdYGcSNAe1iWI-jvummMd3TONUZLhVqdtFz-_rp8sYqxRYs5TCWWYBbHd-QuzlNAZhKaq5jh8mYe462GYEdFYQKn8e-cLkijmGu1zRyJSOMayLdPVRL-oneR5hF2hUA9GwRa2JLzpVivjY2pYbNuY7sKtKhKpnIjSDGazjlUDaBCyFwoQlcOK6j88mSQUHD8ZvzRbU1YXkj05-9D_7kfYpWOlft8P42uDtEq4Ce_KJ39wjVsuG7PkbL6iPrpcOT_CB-AbpE3Mc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+complexity+dichotomy+and+a+new+boundary+class+for+the+dominating+set+problem&rft.jtitle=Journal+of+combinatorial+optimization&rft.au=Malyshev%2C+D.+S.&rft.date=2016-07-01&rft.pub=Springer+US&rft.issn=1382-6905&rft.eissn=1573-2886&rft.volume=32&rft.issue=1&rft.spage=226&rft.epage=243&rft_id=info:doi/10.1007%2Fs10878-015-9872-z&rft.externalDocID=10_1007_s10878_015_9872_z |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-6905&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-6905&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-6905&client=summon |