A complexity dichotomy and a new boundary class for the dominating set problem

We study the computational complexity of the dominating set problem for hereditary graph classes, i.e., classes of simple unlabeled graphs closed under deletion of vertices. Every hereditary class can be defined by a set of its forbidden induced subgraphs. There are numerous open cases for the compl...

Full description

Saved in:
Bibliographic Details
Published in:Journal of combinatorial optimization Vol. 32; no. 1; pp. 226 - 243
Main Author: Malyshev, D. S.
Format: Journal Article
Language:English
Published: New York Springer US 01.07.2016
Subjects:
ISSN:1382-6905, 1573-2886
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We study the computational complexity of the dominating set problem for hereditary graph classes, i.e., classes of simple unlabeled graphs closed under deletion of vertices. Every hereditary class can be defined by a set of its forbidden induced subgraphs. There are numerous open cases for the complexity of the problem even for hereditary classes with small forbidden structures. We completely determine the complexity of the problem for classes defined by forbidding a five-vertex path and any set of fragments with at most five vertices. Additionally, we also prove polynomial-time solvability of the problem for some two classes of a similar type. The notion of a boundary class is a helpful tool for analyzing the computational complexity of graph problems in the family of hereditary classes. Three boundary classes were known for the dominating set problem prior to this paper. We present a new boundary class for it.
AbstractList We study the computational complexity of the dominating set problem for hereditary graph classes, i.e., classes of simple unlabeled graphs closed under deletion of vertices. Every hereditary class can be defined by a set of its forbidden induced subgraphs. There are numerous open cases for the complexity of the problem even for hereditary classes with small forbidden structures. We completely determine the complexity of the problem for classes defined by forbidding a five-vertex path and any set of fragments with at most five vertices. Additionally, we also prove polynomial-time solvability of the problem for some two classes of a similar type. The notion of a boundary class is a helpful tool for analyzing the computational complexity of graph problems in the family of hereditary classes. Three boundary classes were known for the dominating set problem prior to this paper. We present a new boundary class for it.
Author Malyshev, D. S.
Author_xml – sequence: 1
  givenname: D. S.
  surname: Malyshev
  fullname: Malyshev, D. S.
  email: dsmalyshev@rambler.ru, dmalishev@hse.ru
  organization: National Research University Higher School of Economics
BookMark eNp9kMtOAjEUhhuDiYA-gLu-QLW3mbZLQrwlRDe6bjqdDgyZaUlbovD0luDKBavzL8538p9vBiY-eAfAPcEPBGPxmAiWQiJMKqSkoOh4BaakEgxRKetJyUxSVCtc3YBZSluMccl8Ct4X0IZxN7ifPh9g29tNyGE8QONbaKB337AJe9-aeIB2MCnBLkSYNw62Yey9yb1fw-Qy3MXQDG68BdedGZK7-5tz8PX89Ll8RauPl7flYoVs6ZORJC2tGSeKElPVpHHKdVQ2naqow5I7YQ0XplZdbZiynHJWSyda1kguleMNmwNxvmtjSCm6Tts-lzbB52j6QROsT1r0WYsuWvRJiz4Wkvwjd7Efy38XGXpmUtn1axf1NuyjLw9egH4BEvV4Og
CitedBy_id crossref_primary_10_1016_j_tcs_2017_06_012
crossref_primary_10_1002_jgt_23011
crossref_primary_10_1007_s10898_022_01165_9
crossref_primary_10_1007_s11590_021_01744_x
crossref_primary_10_1007_s11590_015_0985_1
crossref_primary_10_1002_net_22232
crossref_primary_10_1134_S0001434625010067
crossref_primary_10_1134_S1990478923010039
crossref_primary_10_1137_20M1352119
crossref_primary_10_3103_S0278641919010084
crossref_primary_10_4213_mzm14308
Cites_doi 10.1016/j.disc.2004.04.010
10.1016/j.tcs.2007.09.013
10.1007/s00224-004-1154-6
10.1016/S0167-5060(08)71047-1
10.1007/s002249910009
10.1016/j.tcs.2011.10.005
10.1016/j.dam.2004.07.006
10.1016/S0166-218X(03)00387-1
10.1016/S0166-218X(99)00128-6
10.1016/0020-0190(84)90126-1
10.1016/j.dam.2015.02.015
10.1007/978-3-642-34611-8_7
10.1007/3-540-45477-2_23
10.1007/978-3-319-12691-3_20
10.1137/0138030
10.1017/S0963548307008814
10.1016/j.dam.2012.08.022
10.1016/j.dam.2014.08.008
10.1007/BF02352694
10.1016/j.dam.2013.10.010
10.1137/1.9781611973402.43
10.1134/S1990478914020112
ContentType Journal Article
Copyright Springer Science+Business Media New York 2015
Copyright_xml – notice: Springer Science+Business Media New York 2015
DBID AAYXX
CITATION
DOI 10.1007/s10878-015-9872-z
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1573-2886
EndPage 243
ExternalDocumentID 10_1007_s10878_015_9872_z
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
29K
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P9R
PF0
PT4
PT5
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
M2P
M7S
PHGZM
PHGZT
PQGLB
PTHSS
ID FETCH-LOGICAL-c288t-81d26341921a561be9ef28bf952e084e7ca47a69f6a39c424368e7d3b8489e4b3
IEDL.DBID RSV
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000379033200014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1382-6905
IngestDate Tue Nov 18 21:22:59 EST 2025
Sat Nov 29 04:54:19 EST 2025
Fri Feb 21 02:33:44 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Boundary class
Polynomial-time algorithm
Dominating set
Computational complexity
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c288t-81d26341921a561be9ef28bf952e084e7ca47a69f6a39c424368e7d3b8489e4b3
PageCount 18
ParticipantIDs crossref_citationtrail_10_1007_s10878_015_9872_z
crossref_primary_10_1007_s10878_015_9872_z
springer_journals_10_1007_s10878_015_9872_z
PublicationCentury 2000
PublicationDate 20160700
2016-7-00
PublicationDateYYYYMMDD 2016-07-01
PublicationDate_xml – month: 7
  year: 2016
  text: 20160700
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of combinatorial optimization
PublicationTitleAbbrev J Comb Optim
PublicationYear 2016
Publisher Springer US
Publisher_xml – name: Springer US
References AbouEisha H, Hussain S, Lozin V, Monnot J, Ries B (2014) A dichotomy for upper domination in monogenic classes. In: Combinatorial optimization and applications. Lecture notes in computer science, vol 8881. Springer, pp 258–267
AlekseevVKorobitsynDLozinVBoundary classes of graphs for the dominating set problemDiscret Math20042851–316207483510.1016/j.disc.2004.04.0101121.05081
ClarkBColbournCJohnsonDUnit disk graphsAnn Discret Math199048165177108856910.1016/S0167-5060(08)71047-10739.05079
AlekseevVA polynomial algorithm for finding the largest independent sets in fork-free graphsDiskretn Analiz i Issled Oper Ser 11999643190931.05078[in russian]
LozinVMoscaRIndependent sets in extensions of 2K2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2K_2$$\end{document}-free graphsDiscret Appl Math20041461 7480211223710.1016/j.dam.2004.07.0061087.90080
BrandstädtADraganFLeH-OMoscaRNew graph classes of bounded clique-widthTheory Comput Syst2005385623645215693910.1007/s00224-004-1154-61084.68088
MalyshevDThe complexity of the edge 3-colorability problem for graphs without two induced fragments each on at most six verticesSib Electron Math Rep2014118118221326.05047
KratschDDomination and total domination in asteroidal triple-free graphsDiscret Appl Math2000991–3111123174382710.1016/S0166-218X(99)00128-60943.05063
Lokshtantov D, Vatshelle M, Villanger Y (2014) Independent set in P5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_5$$\end{document}-free graphs in polynomial time. In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, pp 570–581
GolovachPPaulusmaDList coloring in the absence of two subgraphsDiscret Appl Math2014166123130316316610.1016/j.dam.2013.10.0101283.05096
KorobitsynDOn the complexity of domination number determination in monogenic classes of graphsDiscret Math Appl1992221911991084070
MalyshevDClasses of graphs critical for the edge list-ranking problemJ Appl Ind Math201482 245255318526410.1134/S1990478914020112
LozinVBoundary classes of planar graphsComb Probab Comput2008172287295239635410.1017/S09635483070088141166.05016
BroersmaHGolovachPPaulusmaDSongJUpdating the complexity status of coloring graphs without a fixed induced linear forestTheor Comput Sci20124141919289657910.1016/j.tcs.2011.10.0051234.68129
Graphs: 5-vertices. Information system on graph classes and their inclusions. http://www.graphclasses.org/smallgraphs.html#nodes5. Accessed 27 Jan 2015
Graphclass: AT-free. Information system on graph classes and their inclusions. http://www.graphclasses.org/classes/gc_61.html. Accessed 27 Jan 2015
Malyshev D (2013) The complexity of the 3-colorability problem in the absence of a pair of small forbidden induced subgraphs. Discret Math (submitted)
BertossiADominating sets for split and bipartite graphsInform Process Lett1984191374076162310.1016/0020-0190(84)90126-10539.68058
AlekseevVOn easy and hard hereditary classes of graphs with respect to the independent set problemDiscret Appl Math20031321–31726202426110.1016/S0166-218X(03)00387-11029.05140
BacsóGTuzaZDominating cliques in P5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_5$$\end{document}-free graphsPeriod Math Hung19902130330810.1007/BF023526940746.05065
ZverovichIThe domination number of (Kp,P5)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(K_p, P_5)$$\end{document}-free graphsAustralas J Comb2003279510019553901022.05060
Alekseev V (1983) On the local restrictions effect on the complexity of finding the graph independence number. In: Combinatorial-algebraic methods in applied mathematics. Gorkiy University Press, Gorkiy, pp 3–13 [in russian]
GolovachPPaulusmaDRiesBColoring graphs characterized by a forbidden subgraphDiscret Appl Math20151801101110328069810.1016/j.dam.2014.08.0081303.05061
Schweitzer P (2014) Towards an isomorphism dichotomy for hereditary graph classes. arXiv, arXiv:1411.1977
YannakakisMGavrilFEdge dominating sets in graphsSIAM J Appl Math198038336437257942410.1137/01380300455.05047
CourcelleBMakowskyJRoticsULinear time optimization problems on graphs of bounded clique widthTheory Comput Syst2000332125150173964410.1007/s0022499100091009.68102
Problem: Domination. Information system on graph classes and their inclusions. http://www.graphclasses.org/classes/problem_Domination.html. Accessed 27 Jan 2015
Kral’DKratochvilJTuzaZWoegingerGComplexity of coloring graphs without forbidden induced subgraphsLect. Notes Comput Sci20012204254262190563710.1007/3-540-45477-2_231042.68639
GolovachPPaulusmaDSongJ4-coloring H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H$$\end{document}-free graphs when H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H$$\end{document} is smallDiscret Appl Math20131611–2140150297335710.1016/j.dam.2012.08.0221259.05061
AlekseevVBoliacRKorobitsynDLozinVNP-hard graph problems and boundary classes of graphsTheor Comput Sci20073891–2219236236337410.1016/j.tcs.2007.09.0131143.68058
Lozin V, Malyshev D (2015) Vertex coloring of graphs with few obstructions. Discret Appl Math. doi:10.1016/j.dam.2015.02.015
GareyMJohnsonDComputers and intractability: a guide to the theory of NP-completeness1979New YorkFreeman0411.680391979
KratschSSchweitzerPGraph isomorphism for graph classes characterized by two forbidden induced subgraphsLect Notes Comput Sci201275513445304012510.1007/978-3-642-34611-8_706102415
D Malyshev (9872_CR29) 2014; 8
M Yannakakis (9872_CR32) 1980; 38
V Lozin (9872_CR24) 2008; 17
P Golovach (9872_CR14) 2014; 166
9872_CR30
9872_CR31
G Bacsó (9872_CR7) 1990; 21
9872_CR2
9872_CR1
9872_CR18
9872_CR17
B Courcelle (9872_CR12) 2000; 33
A Brandstädt (9872_CR9) 2005; 38
D Malyshev (9872_CR28) 2014; 11
I Zverovich (9872_CR33) 2003; 27
D Kratsch (9872_CR21) 2000; 99
B Clark (9872_CR11) 1990; 48
V Lozin (9872_CR26) 2004; 146
V Alekseev (9872_CR3) 1999; 6
V Alekseev (9872_CR5) 2007; 389
M Garey (9872_CR13) 1979
P Golovach (9872_CR16) 2013; 161
V Alekseev (9872_CR4) 2003; 132
V Alekseev (9872_CR6) 2004; 285
9872_CR23
9872_CR25
H Broersma (9872_CR10) 2012; 414
P Golovach (9872_CR15) 2015; 180
S Kratsch (9872_CR22) 2012; 7551
9872_CR27
D Kral (9872_CR20) 2001; 2204
D Korobitsyn (9872_CR19) 1992; 2
A Bertossi (9872_CR8) 1984; 19
References_xml – reference: BrandstädtADraganFLeH-OMoscaRNew graph classes of bounded clique-widthTheory Comput Syst2005385623645215693910.1007/s00224-004-1154-61084.68088
– reference: BroersmaHGolovachPPaulusmaDSongJUpdating the complexity status of coloring graphs without a fixed induced linear forestTheor Comput Sci20124141919289657910.1016/j.tcs.2011.10.0051234.68129
– reference: Graphs: 5-vertices. Information system on graph classes and their inclusions. http://www.graphclasses.org/smallgraphs.html#nodes5. Accessed 27 Jan 2015
– reference: KratschSSchweitzerPGraph isomorphism for graph classes characterized by two forbidden induced subgraphsLect Notes Comput Sci201275513445304012510.1007/978-3-642-34611-8_706102415
– reference: ClarkBColbournCJohnsonDUnit disk graphsAnn Discret Math199048165177108856910.1016/S0167-5060(08)71047-10739.05079
– reference: Alekseev V (1983) On the local restrictions effect on the complexity of finding the graph independence number. In: Combinatorial-algebraic methods in applied mathematics. Gorkiy University Press, Gorkiy, pp 3–13 [in russian]
– reference: YannakakisMGavrilFEdge dominating sets in graphsSIAM J Appl Math198038336437257942410.1137/01380300455.05047
– reference: Schweitzer P (2014) Towards an isomorphism dichotomy for hereditary graph classes. arXiv, arXiv:1411.1977
– reference: Kral’DKratochvilJTuzaZWoegingerGComplexity of coloring graphs without forbidden induced subgraphsLect. Notes Comput Sci20012204254262190563710.1007/3-540-45477-2_231042.68639
– reference: AbouEisha H, Hussain S, Lozin V, Monnot J, Ries B (2014) A dichotomy for upper domination in monogenic classes. In: Combinatorial optimization and applications. Lecture notes in computer science, vol 8881. Springer, pp 258–267
– reference: AlekseevVOn easy and hard hereditary classes of graphs with respect to the independent set problemDiscret Appl Math20031321–31726202426110.1016/S0166-218X(03)00387-11029.05140
– reference: KorobitsynDOn the complexity of domination number determination in monogenic classes of graphsDiscret Math Appl1992221911991084070
– reference: Malyshev D (2013) The complexity of the 3-colorability problem in the absence of a pair of small forbidden induced subgraphs. Discret Math (submitted)
– reference: GolovachPPaulusmaDRiesBColoring graphs characterized by a forbidden subgraphDiscret Appl Math20151801101110328069810.1016/j.dam.2014.08.0081303.05061
– reference: LozinVBoundary classes of planar graphsComb Probab Comput2008172287295239635410.1017/S09635483070088141166.05016
– reference: GolovachPPaulusmaDList coloring in the absence of two subgraphsDiscret Appl Math2014166123130316316610.1016/j.dam.2013.10.0101283.05096
– reference: Graphclass: AT-free. Information system on graph classes and their inclusions. http://www.graphclasses.org/classes/gc_61.html. Accessed 27 Jan 2015
– reference: BertossiADominating sets for split and bipartite graphsInform Process Lett1984191374076162310.1016/0020-0190(84)90126-10539.68058
– reference: Lokshtantov D, Vatshelle M, Villanger Y (2014) Independent set in P5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_5$$\end{document}-free graphs in polynomial time. In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, pp 570–581
– reference: LozinVMoscaRIndependent sets in extensions of 2K2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2K_2$$\end{document}-free graphsDiscret Appl Math20041461 7480211223710.1016/j.dam.2004.07.0061087.90080
– reference: GareyMJohnsonDComputers and intractability: a guide to the theory of NP-completeness1979New YorkFreeman0411.680391979
– reference: MalyshevDThe complexity of the edge 3-colorability problem for graphs without two induced fragments each on at most six verticesSib Electron Math Rep2014118118221326.05047
– reference: GolovachPPaulusmaDSongJ4-coloring H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H$$\end{document}-free graphs when H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H$$\end{document} is smallDiscret Appl Math20131611–2140150297335710.1016/j.dam.2012.08.0221259.05061
– reference: KratschDDomination and total domination in asteroidal triple-free graphsDiscret Appl Math2000991–3111123174382710.1016/S0166-218X(99)00128-60943.05063
– reference: ZverovichIThe domination number of (Kp,P5)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(K_p, P_5)$$\end{document}-free graphsAustralas J Comb2003279510019553901022.05060
– reference: Lozin V, Malyshev D (2015) Vertex coloring of graphs with few obstructions. Discret Appl Math. doi:10.1016/j.dam.2015.02.015
– reference: AlekseevVA polynomial algorithm for finding the largest independent sets in fork-free graphsDiskretn Analiz i Issled Oper Ser 11999643190931.05078[in russian]
– reference: AlekseevVKorobitsynDLozinVBoundary classes of graphs for the dominating set problemDiscret Math20042851–316207483510.1016/j.disc.2004.04.0101121.05081
– reference: CourcelleBMakowskyJRoticsULinear time optimization problems on graphs of bounded clique widthTheory Comput Syst2000332125150173964410.1007/s0022499100091009.68102
– reference: AlekseevVBoliacRKorobitsynDLozinVNP-hard graph problems and boundary classes of graphsTheor Comput Sci20073891–2219236236337410.1016/j.tcs.2007.09.0131143.68058
– reference: Problem: Domination. Information system on graph classes and their inclusions. http://www.graphclasses.org/classes/problem_Domination.html. Accessed 27 Jan 2015
– reference: BacsóGTuzaZDominating cliques in P5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_5$$\end{document}-free graphsPeriod Math Hung19902130330810.1007/BF023526940746.05065
– reference: MalyshevDClasses of graphs critical for the edge list-ranking problemJ Appl Ind Math201482 245255318526410.1134/S1990478914020112
– volume: 11
  start-page: 811
  year: 2014
  ident: 9872_CR28
  publication-title: Sib Electron Math Rep
– volume: 285
  start-page: 1
  issue: 1–3
  year: 2004
  ident: 9872_CR6
  publication-title: Discret Math
  doi: 10.1016/j.disc.2004.04.010
– volume: 389
  start-page: 219
  issue: 1–2
  year: 2007
  ident: 9872_CR5
  publication-title: Theor Comput Sci
  doi: 10.1016/j.tcs.2007.09.013
– volume: 38
  start-page: 623
  issue: 5
  year: 2005
  ident: 9872_CR9
  publication-title: Theory Comput Syst
  doi: 10.1007/s00224-004-1154-6
– volume: 48
  start-page: 165
  year: 1990
  ident: 9872_CR11
  publication-title: Ann Discret Math
  doi: 10.1016/S0167-5060(08)71047-1
– volume: 33
  start-page: 125
  issue: 2
  year: 2000
  ident: 9872_CR12
  publication-title: Theory Comput Syst
  doi: 10.1007/s002249910009
– ident: 9872_CR30
– volume: 414
  start-page: 9
  issue: 1
  year: 2012
  ident: 9872_CR10
  publication-title: Theor Comput Sci
  doi: 10.1016/j.tcs.2011.10.005
– volume: 146
  start-page: 74
  issue: 1
  year: 2004
  ident: 9872_CR26
  publication-title: Discret Appl Math
  doi: 10.1016/j.dam.2004.07.006
– volume: 132
  start-page: 17
  issue: 1–3
  year: 2003
  ident: 9872_CR4
  publication-title: Discret Appl Math
  doi: 10.1016/S0166-218X(03)00387-1
– volume: 99
  start-page: 111
  issue: 1–3
  year: 2000
  ident: 9872_CR21
  publication-title: Discret Appl Math
  doi: 10.1016/S0166-218X(99)00128-6
– ident: 9872_CR18
– volume: 19
  start-page: 37
  issue: 1
  year: 1984
  ident: 9872_CR8
  publication-title: Inform Process Lett
  doi: 10.1016/0020-0190(84)90126-1
– ident: 9872_CR2
– ident: 9872_CR25
  doi: 10.1016/j.dam.2015.02.015
– ident: 9872_CR31
– volume: 6
  start-page: 3
  issue: 4
  year: 1999
  ident: 9872_CR3
  publication-title: Diskretn Analiz i Issled Oper Ser 1
– volume: 7551
  start-page: 34
  year: 2012
  ident: 9872_CR22
  publication-title: Lect Notes Comput Sci
  doi: 10.1007/978-3-642-34611-8_7
– volume: 2204
  start-page: 254
  year: 2001
  ident: 9872_CR20
  publication-title: Lect. Notes Comput Sci
  doi: 10.1007/3-540-45477-2_23
– ident: 9872_CR1
  doi: 10.1007/978-3-319-12691-3_20
– ident: 9872_CR27
– volume: 38
  start-page: 364
  issue: 3
  year: 1980
  ident: 9872_CR32
  publication-title: SIAM J Appl Math
  doi: 10.1137/0138030
– volume: 2
  start-page: 191
  issue: 2
  year: 1992
  ident: 9872_CR19
  publication-title: Discret Math Appl
– volume: 17
  start-page: 287
  issue: 2
  year: 2008
  ident: 9872_CR24
  publication-title: Comb Probab Comput
  doi: 10.1017/S0963548307008814
– ident: 9872_CR17
– volume: 161
  start-page: 140
  issue: 1–2
  year: 2013
  ident: 9872_CR16
  publication-title: Discret Appl Math
  doi: 10.1016/j.dam.2012.08.022
– volume: 180
  start-page: 101
  issue: 1
  year: 2015
  ident: 9872_CR15
  publication-title: Discret Appl Math
  doi: 10.1016/j.dam.2014.08.008
– volume: 21
  start-page: 303
  year: 1990
  ident: 9872_CR7
  publication-title: Period Math Hung
  doi: 10.1007/BF02352694
– volume: 27
  start-page: 95
  year: 2003
  ident: 9872_CR33
  publication-title: Australas J Comb
– volume: 166
  start-page: 123
  year: 2014
  ident: 9872_CR14
  publication-title: Discret Appl Math
  doi: 10.1016/j.dam.2013.10.010
– ident: 9872_CR23
  doi: 10.1137/1.9781611973402.43
– volume-title: Computers and intractability: a guide to the theory of NP-completeness
  year: 1979
  ident: 9872_CR13
– volume: 8
  start-page: 245
  issue: 2
  year: 2014
  ident: 9872_CR29
  publication-title: J Appl Ind Math
  doi: 10.1134/S1990478914020112
SSID ssj0009054
Score 2.126133
Snippet We study the computational complexity of the dominating set problem for hereditary graph classes, i.e., classes of simple unlabeled graphs closed under...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 226
SubjectTerms Combinatorics
Convex and Discrete Geometry
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Optimization
Theory of Computation
Title A complexity dichotomy and a new boundary class for the dominating set problem
URI https://link.springer.com/article/10.1007/s10878-015-9872-z
Volume 32
WOSCitedRecordID wos000379033200014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-2886
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009054
  issn: 1382-6905
  databaseCode: RSV
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB509aAH3-L6IgdPSqBN0zY5LuLixUV8sbeSV2FBu8u2iru_3qSPfYAKeixMSpimmW-Yme8DuIgFN4wKgjUXHFMRacx0SLCRqRdr31OCiVJsIu71WL_P7-s57rzpdm9KkuVNvTDsxhwbrB9imycTPF2FNRvtmNNreHh8mTPtemGlZGuho039wqaU-d0rloPRciW0DDDd7X9tbQe2ajyJOtUB2IUVk-3B5gLLoH26m1Gz5vvQ66Cyjdx8WvyN9MDNYA3fJkhkGglkQTaSpdLSeIKUQ9bIolpk1yM9dF0zrksa5aZAtRLNATx3b56ub3EtqoAVYazAFp-SyJG4EV9Y7CQNNylhMuUhMR6jJlaCxiLiaSQCrihxDPUm1oFklHFDZXAIrWyYmSNAfhTbBEYSrgNKtQk4i6RPVCiUJJ7wgzZ4jXcTVTOOO-GL12TOlewcl1jHJc5xybQNl7Mlo4pu4zfjq-ZzJPWfl_9sffwn6xPYsNAoqhpzT6FVjN_NGayrj2KQj8_LE_cFzBrRHA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA46BfXBuzivefBJCbRp2iaPQxwTtyI6ZW8lt8JAN1mruP16k152ARX0sXBSwmma8x3OOd8HwEXImaaEY6QYZ4jwQCGqfIy0SJxQuY7klOdiE2EU0V6P3Zdz3GnV7V6VJPObem7YjVo2WNdHJk_GaLIMVogJWJYw_-Hxeca06_iFkq2Bjib186tS5nevWAxGi5XQPMA0t_61tW2wWeJJ2CgOwA5Y0oNdsDHHMmieOlNq1nQPRA2Yt5HrT4O_oerbGazh6xjygYIcGpANRa60NBpDaZE1NKgWmvVQDW3XjO2ShqnOYKlEsw-emjfd6xYqRRWQxJRmyOBTHFgSN-xyg52EZjrBVCTMx9qhRIeSk5AHLAm4xyTBlqFeh8oTlFCmifAOQG0wHOhDAN0gNAmMwEx5hCjtMRoIF0ufS4Ed7np14FTejWXJOG6FL17iGVeydVxsHBdbx8WTOricLnkr6DZ-M76qPkdc_nnpz9ZHf7I-B2utbqcdt2-ju2OwbmBSUDTpnoBaNnrXp2BVfmT9dHSWn74vov3UAA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA46RfTBuzivefBJCWvTtE0ehzoUdQy8sLeSW2Gg3ViruP16k152ARXEx8JJKacJ-Q7nO98HwFnImaaEY6QYZ4jwQCGqfIy0iJ1QuY7klOdmE2G7Tbtd1il9TtOK7V61JIuZBqvSlGSNgYobM4Nv1CrDuj4yNTNG40WwRCyP3pbrjy9T1V3HL1xtDYw0ZaBftTW_e8X8xTTfFc0vm9bGvz9zE6yXOBM2i42xBRZ0sg3WZtQHzdPDRLI13QHtJszp5frT4HKoenY2q_82gjxRkEMDvqHIHZiGIygt4oYG7UKzHqq-ZdNY9jRMdQZLh5pd8Ny6frq8QaXZApKY0gwZ3IoDK-6GXW4wldBMx5iKmPlYO5ToUHIS8oDFAfeYJNgq1-tQeYISyjQR3h6oJf1E7wPoBqEpbARmyiNEaY_RQLhY-lwK7HDXqwOnynQkSyVya4jxGk01lG3iIpO4yCYuGtfB-WTJoJDh-C34ovo1UXki05-jD_4UfQpWOlet6P62fXcIVg16Cgru7hGoZcN3fQyW5UfWS4cn-Ub8Arbf3OQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+complexity+dichotomy+and+a+new+boundary+class+for+the+dominating+set+problem&rft.jtitle=Journal+of+combinatorial+optimization&rft.au=Malyshev%2C+D.+S.&rft.date=2016-07-01&rft.issn=1382-6905&rft.eissn=1573-2886&rft.volume=32&rft.issue=1&rft.spage=226&rft.epage=243&rft_id=info:doi/10.1007%2Fs10878-015-9872-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10878_015_9872_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-6905&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-6905&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-6905&client=summon