An Implicit Function Theorem for One-sided Lipschitz Mappings
Implicit function theorems are derived for nonlinear set valued equations that satisfy a relaxed one-sided Lipschitz condition. We discuss a local and a global version and study in detail the continuity properties of the implicit set-valued function. Applications are provided to the Crank–Nicolson s...
Uložené v:
| Vydané v: | Set-valued and variational analysis Ročník 19; číslo 3; s. 343 - 359 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Dordrecht
Springer Netherlands
01.09.2011
|
| Predmet: | |
| ISSN: | 1877-0533, 1877-0541 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Implicit function theorems are derived for nonlinear set valued equations that satisfy a relaxed one-sided Lipschitz condition. We discuss a local and a global version and study in detail the continuity properties of the implicit set-valued function. Applications are provided to the Crank–Nicolson scheme for differential inclusions and to the analysis of differential algebraic inclusions. |
|---|---|
| ISSN: | 1877-0533 1877-0541 |
| DOI: | 10.1007/s11228-010-0162-8 |