Multivariable Askey–Wilson function and bispectrality

For every positive integer d , we define a meromorphic function F d ( n ; z ), where n , z ∈ℂ d , which is a natural extension of the multivariable Askey–Wilson polynomials of Gasper and Rahman (Theory and Applications of Special Functions, Dev. Math., vol. 13, pp. 209–219, Springer, New York, 2005...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:The Ramanujan journal Ročník 24; číslo 3; s. 273 - 287
Hlavní autori: Geronimo, Jeffrey S., Iliev, Plamen
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Boston Springer US 01.04.2011
Predmet:
ISSN:1382-4090, 1572-9303
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:For every positive integer d , we define a meromorphic function F d ( n ; z ), where n , z ∈ℂ d , which is a natural extension of the multivariable Askey–Wilson polynomials of Gasper and Rahman (Theory and Applications of Special Functions, Dev. Math., vol. 13, pp. 209–219, Springer, New York, 2005 ). It is defined as a product of very-well-poised 8 φ 7 series and we show that it is a common eigenfunction of two commutative algebras and of difference operators acting on z and n , with eigenvalues depending on n and z , respectively. In particular, this leads to certain identities connecting products of very-well-poised 8 φ 7 series.
ISSN:1382-4090
1572-9303
DOI:10.1007/s11139-010-9244-3