Local cuts for mixed-integer programming

A general framework for cutting-plane generation was proposed by Applegate et al. in the context of the traveling salesman problem. The process considers the image of a problem space under a linear mapping, chosen so that a relaxation of the mapped problem can be solved efficiently. Optimization in...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematical programming computation Ročník 5; číslo 2; s. 171 - 200
Hlavní autoři: Chvátal, Vašek, Cook, William, Espinoza, Daniel
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer-Verlag 01.06.2013
Témata:
ISSN:1867-2949, 1867-2957
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A general framework for cutting-plane generation was proposed by Applegate et al. in the context of the traveling salesman problem. The process considers the image of a problem space under a linear mapping, chosen so that a relaxation of the mapped problem can be solved efficiently. Optimization in the mapped space can be used to find a separating hyperplane, if one exists, and via substitution this gives a cutting plane in the original space. We extend this procedure to general mixed-integer programming problems, obtaining a range of possibilities for new sources of cutting planes. Some of these possibilities are explored computationally, both in floating-point arithmetic and in rational arithmetic.
ISSN:1867-2949
1867-2957
DOI:10.1007/s12532-013-0052-9