Recursive partitioning clustering tree algorithm
Clustering analysis elicits the natural groupings of a dataset without requiring information about the sample class and has been widely used in various fields. Although numerous clustering algorithms have been proposed and proven to perform reasonably well, no consensus exists about which one perfor...
Uloženo v:
| Vydáno v: | Pattern analysis and applications : PAA Ročník 19; číslo 2; s. 355 - 367 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Springer London
01.05.2016
|
| Témata: | |
| ISSN: | 1433-7541, 1433-755X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Clustering analysis elicits the natural groupings of a dataset without requiring information about the sample class and has been widely used in various fields. Although numerous clustering algorithms have been proposed and proven to perform reasonably well, no consensus exists about which one performs best in real situations. In this study, we propose a nonparametric clustering method based on recursive binary partitioning that was implemented in a classification and regression tree model. The proposed clustering algorithm has two key advantages: (1) users do not have to specify any parameters before running it; (2) the final clustering result is represented by a set of if–then rules, thereby facilitating analysis of the clustering results. Experiments with the simulations and real datasets demonstrate the effectiveness and usefulness of the proposed algorithm. |
|---|---|
| ISSN: | 1433-7541 1433-755X |
| DOI: | 10.1007/s10044-014-0399-1 |