Multiple instance classification via quadratic programming

Multiple instance learning (MIL) is a variation of supervised learning, where data consists of labeled bags and each bag contains a set of instances. Unlike traditional supervised learning, labels are not known for the instances in MIL. Existing approaches in the literature make use of certain assum...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of global optimization Ročník 83; číslo 4; s. 639 - 670
Hlavní autoři: Küçükaşcı, Emel Şeyma, Baydoğan, Mustafa Gökçe, Taşkın, Z. Caner
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.08.2022
Springer
Springer Nature B.V
Témata:
ISSN:0925-5001, 1573-2916
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Multiple instance learning (MIL) is a variation of supervised learning, where data consists of labeled bags and each bag contains a set of instances. Unlike traditional supervised learning, labels are not known for the instances in MIL. Existing approaches in the literature make use of certain assumptions regarding the instance labels and propose mixed integer quadratic programs, which introduce computational difficulties. In this study, we present a novel quadratic programming (QP)-based approach to classify bags. Solution of our QP formulation links the instance-level contributions to the bag label estimates, and provides a linear bag classifier along with a decision threshold. Our approach imposes no additional constraints on relating instance labels to bag labels and can be adapted to learning applications with different MIL assumptions. Unlike existing specialized heuristic approaches to solve previous MIL formulations, our QP models can be directly solved to optimality using any commercial QP solver. Also, kindly confirm Our computational experiments show that proposed QP formulation is efficient in terms of solution time, overcoming a main drawback of previous optimization algorithms for MIL. We demonstrate the classification success of our approach compared to the state-of-the-art methods on a wide range of real world datasets.
AbstractList Multiple instance learning (MIL) is a variation of supervised learning, where data consists of labeled bags and each bag contains a set of instances. Unlike traditional supervised learning, labels are not known for the instances in MIL. Existing approaches in the literature make use of certain assumptions regarding the instance labels and propose mixed integer quadratic programs, which introduce computational difficulties. In this study, we present a novel quadratic programming (QP)-based approach to classify bags. Solution of our QP formulation links the instance-level contributions to the bag label estimates, and provides a linear bag classifier along with a decision threshold. Our approach imposes no additional constraints on relating instance labels to bag labels and can be adapted to learning applications with different MIL assumptions. Unlike existing specialized heuristic approaches to solve previous MIL formulations, our QP models can be directly solved to optimality using any commercial QP solver. Also, kindly confirm Our computational experiments show that proposed QP formulation is efficient in terms of solution time, overcoming a main drawback of previous optimization algorithms for MIL. We demonstrate the classification success of our approach compared to the state-of-the-art methods on a wide range of real world datasets.
Audience Academic
Author Küçükaşcı, Emel Şeyma
Baydoğan, Mustafa Gökçe
Taşkın, Z. Caner
Author_xml – sequence: 1
  givenname: Emel Şeyma
  surname: Küçükaşcı
  fullname: Küçükaşcı, Emel Şeyma
  email: eskucukasci@ticaret.edu.tr
  organization: Department of Industrial Engineering, Istanbul Commerce University
– sequence: 2
  givenname: Mustafa Gökçe
  surname: Baydoğan
  fullname: Baydoğan, Mustafa Gökçe
  organization: Department of Industrial Engineering, Boğaziçi University
– sequence: 3
  givenname: Z. Caner
  surname: Taşkın
  fullname: Taşkın, Z. Caner
  organization: Department of Industrial Engineering, Boğaziçi University
BookMark eNp9kE1LxDAQhoOs4Lr6BzwVPHedSdsk9bYsfsGKFz2HbJqWLG26m7SC_964FQQPSw5DhveZYZ5LMnO9M4TcICwRgN8FBFGKFCimgEghhTMyx4JnKS2RzcgcSlqkBQBekMsQdgBQioLOyf3r2A5235rEujAop02iWxWCra1Wg-1d8mlVchhV5eNXJ3vfN151nXXNFTmvVRvM9W9dkI_Hh_f1c7p5e3pZrzappkIMabZVvBSoEZnOqaK1oJkBqHWhuTA8Z2g0UIZ1vq1EnmGV8a1RRhVQZJyBzhbkdpobdx9GEwa560fv4kpJWQmCMSFYTC2nVKNaI62r-8ErHV9lOqujrdrG_oojMJrzXERATID2fQje1FLb4XhyBG0rEeSPWjmplVGtPKqVEFH6D9172yn_dRrKJijEsGuM_zvjBPUNchyMoQ
CitedBy_id crossref_primary_10_1109_TIM_2024_3412223
crossref_primary_10_1007_s40747_023_01133_0
Cites_doi 10.1007/s10489-005-5602-z
10.1007/s10479-012-1241-z
10.1016/j.disopt.2015.03.002
10.1016/j.patcog.2014.07.022
10.1109/TPAMI.2010.155
10.1121/1.4707424
10.1109/TPAMI.2006.248
10.1016/j.apnum.2009.05.013
10.1109/TNNLS.2013.2254721
10.1016/S0004-3702(96)00034-3
10.1007/s10115-006-0029-3
10.1007/s10479-012-1193-3
10.1007/s10957-007-9343-5
10.1109/TNNLS.2016.2519102
10.1007/s10994-013-5429-5
10.1017/S026988890999035X
10.1109/TKDE.2005.50
10.1016/j.patcog.2017.10.009
10.1002/(SICI)1097-0266(199606)17:6<441::AID-SMJ819>3.0.CO;2-G
10.1016/j.artint.2013.06.003
10.1109/TKDE.2009.58
10.1145/1273496.1273510
10.1109/ICPR.2010.715
10.1007/978-3-642-04174-7_2
10.1145/1553374.1553534
10.1007/978-3-319-10470-6_29
10.1007/978-3-540-89689-0_76
10.1145/1015330.1015405
10.1145/1273496.1273643
10.1007/978-3-642-24471-1_13
10.1007/978-3-540-39857-8_42
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
COPYRIGHT 2022 Springer
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
– notice: COPYRIGHT 2022 Springer
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M2O
M2P
M7S
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10898-021-01120-0
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList

ProQuest Business Collection (Alumni Edition)
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Sciences (General)
Computer Science
EISSN 1573-2916
EndPage 670
ExternalDocumentID A710624748
10_1007_s10898_021_01120_0
GrantInformation_xml – fundername: Türkiye Bilimler Akademisi
  grantid: 2020
  funderid: http://dx.doi.org/10.13039/501100004412
GroupedDBID -52
-57
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29K
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
88I
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M2O
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9M
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBE
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8T
Z8U
Z8W
Z92
ZMTXR
ZWQNP
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c288t-3ba7981c116c42a2f823e00fc5c78e7461ec0261f4bd8431d37beaea5053760c3
IEDL.DBID RSV
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000741634100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-5001
IngestDate Wed Nov 05 03:35:17 EST 2025
Sat Nov 29 10:36:19 EST 2025
Sat Nov 29 01:59:36 EST 2025
Tue Nov 18 21:06:45 EST 2025
Fri Feb 21 02:45:08 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Quadratic programming
Multiple instance learning
Classification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c288t-3ba7981c116c42a2f823e00fc5c78e7461ec0261f4bd8431d37beaea5053760c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2690866886
PQPubID 29930
PageCount 32
ParticipantIDs proquest_journals_2690866886
gale_infotracacademiconefile_A710624748
crossref_citationtrail_10_1007_s10898_021_01120_0
crossref_primary_10_1007_s10898_021_01120_0
springer_journals_10_1007_s10898_021_01120_0
PublicationCentury 2000
PublicationDate 20220800
2022-08-00
20220801
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 8
  year: 2022
  text: 20220800
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal Dealing with Theoretical and Computational Aspects of Seeking Global Optima and Their Applications in Science, Management and Engineering
PublicationTitle Journal of global optimization
PublicationTitleAbbrev J Glob Optim
PublicationYear 2022
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References Zhou, Zhang (CR38) 2007; 11
Carbonneau, Cheplygina, Granger, Gagnon (CR5) 2018; 77
Fischetti (CR11) 2016; 22
CR19
CR17
Foulds, Frank (CR12) 2010; 25
CR15
CR37
CR36
Chen, Bi, Wang (CR6) 2006; 28
CR34
CR10
CR32
CR31
CR30
Briggs, Lakshminarayanan, Neal, Fern, Raich, Hadley, Hadley, Betts (CR3) 2012; 131
Şeref, Chaovalitwongse, Brooks (CR26) 2014; 216
Zhou, Jiang, Li (CR35) 2005; 22
Doran, Ray (CR9) 2014; 97
Fu, Robles-Kelly, Zhou (CR14) 2011; 33
Mangasarian, Wild (CR23) 2008; 137
CR2
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg (CR24) 2011; 12
CR4
Ketchen, Shook (CR18) 1996; 17
Poursaeidi, Kundakcioglu (CR25) 2014; 216
Dietterich, Lathrop, Lozano-Pérez (CR8) 1997; 89
Amores (CR1) 2013; 201
CR29
CR28
CR27
Cheplygina, Tax, Loog (CR7) 2015; 48
Kundakcioglu, Seref, Pardalos (CR20) 2010; 60
CR22
Wei, Wu, Zhou (CR33) 2017; 28
Huang, Ling (CR16) 2005; 17
Fu, Lu, Ting, Zhang (CR13) 2013; 24
Li, Yeung (CR21) 2010; 22
OL Mangasarian (1120_CR23) 2008; 137
F Pedregosa (1120_CR24) 2011; 12
1120_CR4
Z Fu (1120_CR14) 2011; 33
1120_CR2
OE Kundakcioglu (1120_CR20) 2010; 60
MA Carbonneau (1120_CR5) 2018; 77
DJ Ketchen Jr (1120_CR18) 1996; 17
1120_CR27
O Şeref (1120_CR26) 2014; 216
1120_CR29
XS Wei (1120_CR33) 2017; 28
1120_CR28
V Cheplygina (1120_CR7) 2015; 48
WJ Li (1120_CR21) 2010; 22
1120_CR22
1120_CR30
Z Fu (1120_CR13) 2013; 24
G Doran (1120_CR9) 2014; 97
1120_CR10
1120_CR32
1120_CR31
J Amores (1120_CR1) 2013; 201
TG Dietterich (1120_CR8) 1997; 89
ZH Zhou (1120_CR38) 2007; 11
M Fischetti (1120_CR11) 2016; 22
F Briggs (1120_CR3) 2012; 131
J Foulds (1120_CR12) 2010; 25
1120_CR19
Y Chen (1120_CR6) 2006; 28
ZH Zhou (1120_CR35) 2005; 22
1120_CR15
J Huang (1120_CR16) 2005; 17
1120_CR37
1120_CR17
MH Poursaeidi (1120_CR25) 2014; 216
1120_CR34
1120_CR36
References_xml – volume: 22
  start-page: 135
  issue: 2
  year: 2005
  end-page: 147
  ident: CR35
  article-title: Multi-instance learning based web mining
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-005-5602-z
– ident: CR22
– volume: 216
  start-page: 205
  issue: 1
  year: 2014
  end-page: 227
  ident: CR25
  article-title: Robust support vector machines for multiple instance learning
  publication-title: Ann. Oper. Res.
  doi: 10.1007/s10479-012-1241-z
– volume: 22
  start-page: 183
  year: 2016
  end-page: 194
  ident: CR11
  article-title: Fast training of support vector machines with gaussian kernel
  publication-title: Discr Optim.
  doi: 10.1016/j.disopt.2015.03.002
– volume: 48
  start-page: 264
  issue: 1
  year: 2015
  end-page: 275
  ident: CR7
  article-title: Multiple instance learning with bag dissimilarities
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2014.07.022
– volume: 33
  start-page: 958
  issue: 5
  year: 2011
  end-page: 977
  ident: CR14
  article-title: MILIS: multiple instance learning with instance selection
  publication-title: Pattern Anal. Mach. Intell., IEEE Trans.
  doi: 10.1109/TPAMI.2010.155
– ident: CR4
– ident: CR2
– ident: CR37
– ident: CR30
– ident: CR10
– volume: 131
  start-page: 4640
  issue: 6
  year: 2012
  end-page: 4650
  ident: CR3
  article-title: Acoustic classification of multiple simultaneous bird species: a multi-instance multi-label approach
  publication-title: J Acoust. Soc. Am.
  doi: 10.1121/1.4707424
– volume: 28
  start-page: 1931
  issue: 12
  year: 2006
  end-page: 1947
  ident: CR6
  article-title: MILES: multiple-instance learning via embedded instance selection
  publication-title: Pattern Anal. Mach. Intell., IEEE Trans.
  doi: 10.1109/TPAMI.2006.248
– volume: 60
  start-page: 358
  issue: 4
  year: 2010
  end-page: 369
  ident: CR20
  article-title: Multiple instance learning via margin maximization
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2009.05.013
– ident: CR29
– volume: 24
  start-page: 1377
  issue: 9
  year: 2013
  end-page: 1389
  ident: CR13
  article-title: Learning sparse kernel classifiers for multi-instance classification
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2013.2254721
– ident: CR27
– volume: 89
  start-page: 31
  issue: 1
  year: 1997
  end-page: 71
  ident: CR8
  article-title: Solving the multiple instance problem with axis-parallel rectangles
  publication-title: Artif. intell.
  doi: 10.1016/S0004-3702(96)00034-3
– volume: 11
  start-page: 155
  issue: 2
  year: 2007
  end-page: 170
  ident: CR38
  article-title: Solving multi-instance problems with classifier ensemble based on constructive clustering
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-006-0029-3
– ident: CR19
– volume: 216
  start-page: 229
  issue: 1
  year: 2014
  end-page: 255
  ident: CR26
  article-title: Relaxing support vectors for classification
  publication-title: Ann. Oper. Res.
  doi: 10.1007/s10479-012-1193-3
– ident: CR15
– volume: 137
  start-page: 555
  issue: 3
  year: 2008
  end-page: 568
  ident: CR23
  article-title: Multiple instance classification via successive linear programming
  publication-title: J. Optim. Theor. Appl.
  doi: 10.1007/s10957-007-9343-5
– ident: CR17
– ident: CR31
– volume: 28
  start-page: 975
  issue: 4
  year: 2017
  end-page: 987
  ident: CR33
  article-title: Scalable algorithms for multi-instance learning
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2016.2519102
– volume: 97
  start-page: 79
  issue: 1–2
  year: 2014
  end-page: 102
  ident: CR9
  article-title: A theoretical and empirical analysis of support vector machine methods for multiple-instance classification
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-013-5429-5
– volume: 12
  start-page: 2825
  issue: Oct
  year: 2011
  end-page: 2830
  ident: CR24
  article-title: Scikit-learn: machine learning in Python
  publication-title: J. Mach. Learn. Res.
– ident: CR32
– volume: 25
  start-page: 1
  issue: 01
  year: 2010
  end-page: 25
  ident: CR12
  article-title: A review of multi-instance learning assumptions
  publication-title: Knowl. Eng. Rev.
  doi: 10.1017/S026988890999035X
– ident: CR34
– ident: CR36
– volume: 17
  start-page: 299
  issue: 3
  year: 2005
  end-page: 310
  ident: CR16
  article-title: Using AUC and accuracy in evaluating learning algorithms
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2005.50
– volume: 77
  start-page: 329
  year: 2018
  end-page: 353
  ident: CR5
  article-title: Multiple instance learning: a survey of problem characteristics and applications
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2017.10.009
– volume: 17
  start-page: 441
  issue: 6
  year: 1996
  end-page: 458
  ident: CR18
  article-title: The application of cluster analysis in strategic management research: an analysis and critique
  publication-title: Strateg. Manage. J.
  doi: 10.1002/(SICI)1097-0266(199606)17:6<441::AID-SMJ819>3.0.CO;2-G
– volume: 201
  start-page: 81
  year: 2013
  end-page: 105
  ident: CR1
  article-title: Multiple instance classification: review, taxonomy and comparative study
  publication-title: Artif. Intell.
  doi: 10.1016/j.artint.2013.06.003
– volume: 22
  start-page: 76
  issue: 1
  year: 2010
  end-page: 89
  ident: CR21
  article-title: MILD: multiple-instance learning via disambiguation
  publication-title: Knowl. Data Eng., IEEE Trans.
  doi: 10.1109/TKDE.2009.58
– ident: CR28
– ident: 1120_CR4
  doi: 10.1145/1273496.1273510
– volume: 24
  start-page: 1377
  issue: 9
  year: 2013
  ident: 1120_CR13
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2013.2254721
– volume: 60
  start-page: 358
  issue: 4
  year: 2010
  ident: 1120_CR20
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2009.05.013
– ident: 1120_CR31
  doi: 10.1109/ICPR.2010.715
– ident: 1120_CR22
  doi: 10.1007/978-3-642-04174-7_2
– volume: 48
  start-page: 264
  issue: 1
  year: 2015
  ident: 1120_CR7
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2014.07.022
– volume: 22
  start-page: 76
  issue: 1
  year: 2010
  ident: 1120_CR21
  publication-title: Knowl. Data Eng., IEEE Trans.
  doi: 10.1109/TKDE.2009.58
– ident: 1120_CR29
– volume: 28
  start-page: 975
  issue: 4
  year: 2017
  ident: 1120_CR33
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2016.2519102
– volume: 12
  start-page: 2825
  issue: Oct
  year: 2011
  ident: 1120_CR24
  publication-title: J. Mach. Learn. Res.
– volume: 33
  start-page: 958
  issue: 5
  year: 2011
  ident: 1120_CR14
  publication-title: Pattern Anal. Mach. Intell., IEEE Trans.
  doi: 10.1109/TPAMI.2010.155
– ident: 1120_CR19
– ident: 1120_CR32
– volume: 28
  start-page: 1931
  issue: 12
  year: 2006
  ident: 1120_CR6
  publication-title: Pattern Anal. Mach. Intell., IEEE Trans.
  doi: 10.1109/TPAMI.2006.248
– volume: 97
  start-page: 79
  issue: 1–2
  year: 2014
  ident: 1120_CR9
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-013-5429-5
– volume: 77
  start-page: 329
  year: 2018
  ident: 1120_CR5
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2017.10.009
– ident: 1120_CR15
– ident: 1120_CR36
  doi: 10.1145/1553374.1553534
– volume: 25
  start-page: 1
  issue: 01
  year: 2010
  ident: 1120_CR12
  publication-title: Knowl. Eng. Rev.
  doi: 10.1017/S026988890999035X
– ident: 1120_CR17
  doi: 10.1007/978-3-319-10470-6_29
– volume: 17
  start-page: 441
  issue: 6
  year: 1996
  ident: 1120_CR18
  publication-title: Strateg. Manage. J.
  doi: 10.1002/(SICI)1097-0266(199606)17:6<441::AID-SMJ819>3.0.CO;2-G
– volume: 22
  start-page: 135
  issue: 2
  year: 2005
  ident: 1120_CR35
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-005-5602-z
– volume: 201
  start-page: 81
  year: 2013
  ident: 1120_CR1
  publication-title: Artif. Intell.
  doi: 10.1016/j.artint.2013.06.003
– volume: 11
  start-page: 155
  issue: 2
  year: 2007
  ident: 1120_CR38
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-006-0029-3
– volume: 17
  start-page: 299
  issue: 3
  year: 2005
  ident: 1120_CR16
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2005.50
– ident: 1120_CR30
  doi: 10.1007/978-3-540-89689-0_76
– volume: 89
  start-page: 31
  issue: 1
  year: 1997
  ident: 1120_CR8
  publication-title: Artif. intell.
  doi: 10.1016/S0004-3702(96)00034-3
– ident: 1120_CR27
– volume: 137
  start-page: 555
  issue: 3
  year: 2008
  ident: 1120_CR23
  publication-title: J. Optim. Theor. Appl.
  doi: 10.1007/s10957-007-9343-5
– ident: 1120_CR28
  doi: 10.1145/1015330.1015405
– volume: 131
  start-page: 4640
  issue: 6
  year: 2012
  ident: 1120_CR3
  publication-title: J Acoust. Soc. Am.
  doi: 10.1121/1.4707424
– volume: 22
  start-page: 183
  year: 2016
  ident: 1120_CR11
  publication-title: Discr Optim.
  doi: 10.1016/j.disopt.2015.03.002
– volume: 216
  start-page: 229
  issue: 1
  year: 2014
  ident: 1120_CR26
  publication-title: Ann. Oper. Res.
  doi: 10.1007/s10479-012-1193-3
– volume: 216
  start-page: 205
  issue: 1
  year: 2014
  ident: 1120_CR25
  publication-title: Ann. Oper. Res.
  doi: 10.1007/s10479-012-1241-z
– ident: 1120_CR37
  doi: 10.1145/1273496.1273643
– ident: 1120_CR10
  doi: 10.1007/978-3-642-24471-1_13
– ident: 1120_CR34
  doi: 10.1007/978-3-540-39857-8_42
– ident: 1120_CR2
SSID ssj0009852
Score 2.338793
Snippet Multiple instance learning (MIL) is a variation of supervised learning, where data consists of labeled bags and each bag contains a set of instances. Unlike...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 639
SubjectTerms Algorithms
Classification
Computer Science
Heuristic methods
Labels
Mathematical optimization
Mathematics
Mathematics and Statistics
Mixed integer
Operations Research/Decision Theory
Optimization
Quadratic programming
Real Functions
Supervised learning
SummonAdditionalLinks – databaseName: Science Database
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB61lEM5lC4PsQWqHCoBgqiJ4yReLgihol5AeygSN2t27Egr0X0vv58Z42UpFVw4J7GtfJ6XPfMNwA-NlOfE8k2sIlP2bzE1DovUsTFApIYtig7NJurra3N72-nGA7dpTKtc6MSgqN2Q5Iz8p-IwzlSVMdXZaJxK1yi5XY0tND7CJ_ZscknpulLdJemuCR13so4q05L1cSyaiaVzRorLlATTOYdQ2T-G6aV6_u-eNJify_X3LvwrfImOZ3L-uFNa8MEPNmDtGR3hBrSioE-Tw8hGfbQJp1cx5TDpB0-SfELicUuKUUA1ue9jMp6jk71ESUz4-ssjbsHN5a8_F7_T2HAhJWXMLC16WHcMQ5dXpBWqxqjCZ1lDJdXG17rKPUnM1uieM-x5uKLuefRYBlKYjIptWBkMB34HEtYNJSqvtHOovfDKNcrVhpAD4gYrbEO--NuWIhu5NMW4s0seZUHIMkI2IGSzNhw_fTN65OJ48-0DAdGKoPLIhLHegNcnlFf2nH2rSulamzbsLZCzUYKndglbG04W2C8fvz7vt7dH24XPSiooQg7hHqzMJnO_D6t0P-tPJ9_D_n0Ai_Py4Q
  priority: 102
  providerName: ProQuest
Title Multiple instance classification via quadratic programming
URI https://link.springer.com/article/10.1007/s10898-021-01120-0
https://www.proquest.com/docview/2690866886
Volume 83
WOSCitedRecordID wos000741634100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-2916
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009852
  issn: 0925-5001
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dTxQxEJ8g-KAPAqeEA7z0wQSMbrLb7W57vCGBkJg7L-AH-tLMzXaTS_D42IO_32npcqhooi-TbLbbbTqdr3TmNwCvFFKWEcs3sYpM2L_FxFSYJxUbA0Sq2aKo0GxCD4fm9LQ_ikVhTZvt3l5JBk19r9jN-HIw6cPfjIMeDtSX2NwZ37Dh-OTzHGrXhD47aV8WScFaOJbKPDzHT-boV6X82-1oMDqHy_-33BV4Fp1MsXd7KlZhwU07sNw2cBBRnjvw9B4aIT8N7iBcmw6sxlGN2InQ1K-fw-4g5h-KSXAryQny7rfPNwosFjcTFJfXWPmDRSJmf33n-V_Ap8ODj_tHSey-kJA0ZpbkY9R9w3zMSlISZW1k7tK0poK0cVqVmSMfwNVqXBl2Q6pcjx06LAJCTEr5GixOz6duHQQrigKlk6qqUDkPMlfLShtCjo5rLLELWcsESxGa3HfIOLNzUGW_m5Z304bdtGkX3tx9c3ELzPHX0duet9ZLLc9MGIsPeH0e_8rusaNVSqWV6cJWy34bxbmxsuxz6FcaU3bhbcvu-es__3fj34ZvwhPpyytCguEWLM6urt1LeEw3s0lz1YNH-svXHiy9OxiOjvnpvU6YDtJ9T-WHQEee6hOmo-JbLwjGD94--5E
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgkQ5AC1ULBTwAQQIIhLHSbxICFVA1artqoci9ebOjh1pJdg-dlvEn-I3MuN1WB6itx44J5k8_M0rnvkG4IlBKgpi_SY2kRnHt5hZj2Xm2RkgUssexcRhE81gYA8O-nsL8L3rhZGyys4mRkPtj0j-kb_WnMbZura2fnd8ksnUKNld7UZozGCxHb595ZRt8nbrA6_vU603Pu6_38zSVIGMtLXTrBxi07f8fEVNRqNurS5DnrdUUWNDY-oikCQmrRl6y-7Vl80wYMAqMp_kVLLcK3DVCLOYlArqvTnJr40TfvK-rrKK7X9q0kmtelaa2bQk7wWnbPlvjvBPd_DXvmx0dxu3_rcPdRtupsBarc80YRkWwngFbvxCt7gCy8mQTdTzxLb94g682U0llWoUI2UKiiSjkBKqiFp1PkJ1coZedIVUKmj7whLvwqdLeaNVWBwfjcM9UGz7KtRBG-_RBOHNa7VvLCEn_C3W2IOiW11HiW1dhn58dnOeaEGEY0S4iAiX9-Dlz2uOZ1wjF579TEDjxBCxZMLUT8HPJ5Rebp1jx1qbxtgerHVIcclCTdwcJj141WFtfvjf971_sbTHcH1zf3fH7WwNth_AkpZukVgvuQaL09Oz8BCu0fl0NDl9FHVHweFlY_AHuGVOyg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VghAcgBYQCwV8AAGCqInjJF4khCrKiqqw2gNIFRczO3aklWD72G0Rf41fx4zXYXmI3nrgHGfixN_MeOKZbwAeGKSiINZvYhOZ8f4WM-uxzDw7A0Rq2aOY2GyiGQ7t3l5_tALfu1oYSavsbGI01H6f5B_5puYwzta1tfVmm9IiRtuDlweHmXSQkpPWrp3GAiK74dtXDt9mL3a2ea0faj14_f7Vmyx1GMhIWzvPyjE2fctzLWoyGnVrdRnyvKWKGhsaUxeBJEhpzdhbdrW-bMYBA1aRBSWnkuWeg_M8sC_phKPq45Lw18ZuP3lfV1nFviAV7KSyPSuFbVoC-YLDt_w3p_ina_jrjDa6vsHV__mjXYMracOtthYasgYrYboOl3-hYVyHtWTgZupxYuF-ch2ev0uplmoSd9AUFEmkIalVEc3qZILq8Bi96BCplOj2hSXegA9n8kY3YXW6Pw23QLFNrFAHbbxHE4RPr9W-sYS2bFqssQdFt9KOEgu7NAP57Jb80YIOx-hwER0u78HTn_ccLDhITh39SADkxECxZMJUZ8HzE6ovt8V7ylqbxtgebHSocclyzdwSMj141uFuefnfz719urT7cJGh597uDHfvwCUtRSQxjXIDVudHx-EuXKCT-WR2dC-qkYJPZw3BH2bbV7Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+instance+classification+via+quadratic+programming&rft.jtitle=Journal+of+global+optimization&rft.au=K%C3%BC%C3%A7%C3%BCka%C5%9Fc%C4%B1%2C+Emel+%C5%9Eeyma&rft.au=Baydo%C4%9Fan%2C+Mustafa+G%C3%B6k%C3%A7e&rft.au=Ta%C5%9Fk%C4%B1n%2C+Z.+Caner&rft.date=2022-08-01&rft.issn=0925-5001&rft.eissn=1573-2916&rft.volume=83&rft.issue=4&rft.spage=639&rft.epage=670&rft_id=info:doi/10.1007%2Fs10898-021-01120-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10898_021_01120_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-5001&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-5001&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-5001&client=summon