Optimal Order of Convergence and (In)Tractability of Multivariate Approximation of Smooth Functions

We study the approximation problem for C ∞ functions f :[0,1] d →ℝ with respect to a W p m -norm. Here, m =[ m , m ,…, m ], d times, with the norm of the target space defined in terms of up to m partial derivatives with respect to all d variables. The optimal order of convergence is infinite, hence...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Constructive approximation Jg. 30; H. 3; S. 457 - 473
Hauptverfasser: Novak, Erich, Woźniakowski, Henryk
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer-Verlag 01.12.2009
Schlagworte:
ISSN:0176-4276, 1432-0940
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the approximation problem for C ∞ functions f :[0,1] d →ℝ with respect to a W p m -norm. Here, m =[ m , m ,…, m ], d times, with the norm of the target space defined in terms of up to m partial derivatives with respect to all d variables. The optimal order of convergence is infinite, hence excellent, but the problem is still intractable and suffers from the curse of dimensionality if m ≥1. This means that the order of convergence supplies incomplete information concerning the computational difficulty of a problem. For m =0 and p =2, we prove that the problem is not polynomially tractable, but that it is weakly tractable.
ISSN:0176-4276
1432-0940
DOI:10.1007/s00365-009-9069-8