An Exact Algorithm for TSP in Degree-3 Graphs Via Circuit Procedure and Amortization on Connectivity Structure
The paper presents an O ∗ ( 1 . 2312 n ) -time and polynomial-space algorithm for the traveling salesman problem in an n -vertex graph with maximum degree 3. This improves all previous time bounds of polynomial-space algorithms for this problem. Our algorithm is a simple branch-and-search algorithm...
Uloženo v:
| Vydáno v: | Algorithmica Ročník 74; číslo 2; s. 713 - 741 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.02.2016
|
| Témata: | |
| ISSN: | 0178-4617, 1432-0541 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The paper presents an
O
∗
(
1
.
2312
n
)
-time and polynomial-space algorithm for the traveling salesman problem in an
n
-vertex graph with maximum degree 3. This improves all previous time bounds of polynomial-space algorithms for this problem. Our algorithm is a simple branch-and-search algorithm with only one branch rule designed on a cut-circuit structure of a graph induced by unprocessed edges. To improve a time bound by a simple analysis on measure and conquer, we introduce an amortization scheme over the cut-circuit structure by defining the measure of an instance to be the sum of not only weights of vertices but also weights of connected components of the induced graph. |
|---|---|
| ISSN: | 0178-4617 1432-0541 |
| DOI: | 10.1007/s00453-015-9970-4 |