Penalty and partitioning techniques to improve performance of QUBO solvers

Quadratic Unconstrained Binary Optimization (QUBO) modeling has become a unifying framework for solving a wide variety of both unconstrained as well as constrained optimization problems. More recently, QUBO (or equivalent −1/+1 Ising Spin) models are a requirement for quantum annealing computers. No...

Full description

Saved in:
Bibliographic Details
Published in:Discrete optimization Vol. 44; p. 100594
Main Authors: Verma, Amit, Lewis, Mark
Format: Journal Article
Language:English
Published: Elsevier B.V 01.05.2022
Subjects:
ISSN:1572-5286, 1873-636X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Quadratic Unconstrained Binary Optimization (QUBO) modeling has become a unifying framework for solving a wide variety of both unconstrained as well as constrained optimization problems. More recently, QUBO (or equivalent −1/+1 Ising Spin) models are a requirement for quantum annealing computers. Noisy Intermediate-Scale Quantum (NISQ) computing refers to classical computing preparing or compiling problem instances for compatibility with quantum hardware architectures. The process of converting a constrained problem to a QUBO compatible quantum annealing problem is an important part of the quantum compiler architecture and specifically when converting constrained models to unconstrained the choice of penalty magnitude is not trivial because using a large penalty to enforce constraints can overwhelm the solution landscape, while having too small a penalty allows infeasible optimal solutions. In this paper we present NISQ approaches to bound the magnitude of the penalty scalar M and demonstrate efficacy on a benchmark set of problems having a single equality constraint and present a QUBO partitioning approach validated by experimentation.
AbstractList Quadratic Unconstrained Binary Optimization (QUBO) modeling has become a unifying framework for solving a wide variety of both unconstrained as well as constrained optimization problems. More recently, QUBO (or equivalent −1/+1 Ising Spin) models are a requirement for quantum annealing computers. Noisy Intermediate-Scale Quantum (NISQ) computing refers to classical computing preparing or compiling problem instances for compatibility with quantum hardware architectures. The process of converting a constrained problem to a QUBO compatible quantum annealing problem is an important part of the quantum compiler architecture and specifically when converting constrained models to unconstrained the choice of penalty magnitude is not trivial because using a large penalty to enforce constraints can overwhelm the solution landscape, while having too small a penalty allows infeasible optimal solutions. In this paper we present NISQ approaches to bound the magnitude of the penalty scalar M and demonstrate efficacy on a benchmark set of problems having a single equality constraint and present a QUBO partitioning approach validated by experimentation.
ArticleNumber 100594
Author Verma, Amit
Lewis, Mark
Author_xml – sequence: 1
  givenname: Amit
  surname: Verma
  fullname: Verma, Amit
  email: averma@missouriwestern.edu
– sequence: 2
  givenname: Mark
  orcidid: 0000-0002-8506-7380
  surname: Lewis
  fullname: Lewis, Mark
BookMark eNqFkF1LwzAUhoNMcJv-Ay_yBzqTpklbLwQdfjKYwgTvQpqeakaX1CQO9u9tqVde6NV5OfC8nPPM0MQ6CwidU7KghIqL7aI2wXVxkZJ0WBFeZkdoSoucJYKJt0mfeZ4mPC3ECZqFsCWEZSXjU_T0DFa18YCVrXGnfDTROGvsO46gP6z5_IKAo8Nm13m3B9yBb5zfKasBuwa_vN6scXDtHnw4RceNagOc_cw52tzdbpYPyWp9_7i8XiU6LfKYUM6gKHmpVCa4Eg0wSLXKyorlOSkpSzlQXoiqbCqaZaSmWileC8JplVd5w-bocqzV3oXgoZHaRDVcHb0yraREDlLkVo5S5CBFjlJ6OPsFd97slD_8h12NGPR_7Q14GbSB3kFtPOgoa2f-LvgGWkKA8A
CitedBy_id crossref_primary_10_3390_ai6080175
crossref_primary_10_1109_JIOT_2025_3546645
crossref_primary_10_1007_s43762_022_00070_x
crossref_primary_10_1002_qute_202400384
crossref_primary_10_1063_5_0216656
crossref_primary_10_1109_ACCESS_2023_3318206
crossref_primary_10_3788_AOS251081
crossref_primary_10_1088_2058_9565_ad35e4
crossref_primary_10_1103_zmgv_m2ql
crossref_primary_10_1038_s41598_025_93552_x
crossref_primary_10_1007_s11128_022_03421_z
crossref_primary_10_1007_s12652_021_03033_y
crossref_primary_10_1007_s42484_024_00186_9
crossref_primary_10_1038_s41598_024_67168_6
crossref_primary_10_1109_ACCESS_2025_3550788
crossref_primary_10_1111_itor_13471
crossref_primary_10_3390_a16050252
crossref_primary_10_1038_s42005_025_02072_7
crossref_primary_10_1007_s10732_025_09564_3
crossref_primary_10_1007_s11128_024_04471_1
crossref_primary_10_1016_j_eneco_2024_107976
crossref_primary_10_1109_ACCESS_2025_3525620
crossref_primary_10_1080_17445760_2024_2376928
crossref_primary_10_1109_ACCESS_2023_3313102
crossref_primary_10_1016_j_infsof_2025_107861
crossref_primary_10_1109_ACCESS_2024_3455436
Cites_doi 10.1016/j.ejor.2012.07.012
10.1007/s10878-014-9734-0
10.1007/JHEP11(2019)128
10.1007/BF00202749
10.1057/jors.1990.166
10.22331/q-2018-08-06-79
10.1504/IJOR.2016.075647
10.3389/fict.2016.00014
10.3390/a12040077
10.1007/s10288-019-00424-y
10.1007/s10732-011-9170-6
10.1016/S0304-3975(97)00176-X
10.1080/01621459.1949.10483310
ContentType Journal Article
Copyright 2020
Copyright_xml – notice: 2020
DBID AAYXX
CITATION
DOI 10.1016/j.disopt.2020.100594
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-636X
ExternalDocumentID 10_1016_j_disopt_2020_100594
S1572528620300281
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
AAAKF
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
ABAOU
ABMAC
ABUCO
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HAMUX
HVGLF
HZ~
IHE
IXB
J1W
J9A
KOM
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSB
SSD
SSW
SSZ
T5K
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c287t-153e8959aa465a6fe3e2ca49b377091325e1586b9fb1440d1caa5d6051b7b7f3
ISSN 1572-5286
IngestDate Tue Nov 18 21:52:00 EST 2025
Sat Nov 29 07:05:20 EST 2025
Fri Feb 23 02:39:19 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Quadratic Unconstrained Binary Optimization
Nonlinear optimization
Pseudo-Boolean optimization
Equality constraint
Inequality constraint
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c287t-153e8959aa465a6fe3e2ca49b377091325e1586b9fb1440d1caa5d6051b7b7f3
ORCID 0000-0002-8506-7380
ParticipantIDs crossref_citationtrail_10_1016_j_disopt_2020_100594
crossref_primary_10_1016_j_disopt_2020_100594
elsevier_sciencedirect_doi_10_1016_j_disopt_2020_100594
PublicationCentury 2000
PublicationDate May 2022
2022-05-00
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: May 2022
PublicationDecade 2020
PublicationTitle Discrete optimization
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Vyskocil, Djidjev (b6) 2018
(b19) 2019
Kochenberger, Hao, Glover, Lewis, Lü, Wang, Wang (b1) 2014; 28
Metropolis, Ulam (b22) 1949; 44
Lovász, Pelikán, Vesztergombi (b14) 2006
Bian, Chudak, Israel, Lackey, Macready, Roy (b9) 2016; 3
Glover, Kochenberger, Du (b2) 2019; 17
Glover, Kochenberger, Alidaee, Amini (b11) 2002
Cormier, Di Sipio, Wittek (b5) 2019; 2019
Beasley (b16) 1990; 41
Vyskočil, Pakin, Djidjev (b8) 2019
Verma, Lewis (b10) 2019
Bontempi, Birattari (b15) 2005; 3
Angel, Zissimopoulos (b20) 1998; 191
Weinberger (b21) 1990; 63
Mooney, Tonetto, Hill, Hollenberg (b3) 2019
Vyskocil, Djidjev (b7) 2019; 12
Chicano, Alba (b13) 2013; 19
Wang, Lü, Glover, Hao (b18) 2012; 223
Preskill (b4) 2018; 2
Lewis, Kochenberger (b17) 2016; 26
Stadler (b12) 2002
Kochenberger (10.1016/j.disopt.2020.100594_b1) 2014; 28
(10.1016/j.disopt.2020.100594_b19) 2019
Vyskočil (10.1016/j.disopt.2020.100594_b8) 2019
Bontempi (10.1016/j.disopt.2020.100594_b15) 2005; 3
Cormier (10.1016/j.disopt.2020.100594_b5) 2019; 2019
Vyskocil (10.1016/j.disopt.2020.100594_b6) 2018
Glover (10.1016/j.disopt.2020.100594_b11) 2002
Wang (10.1016/j.disopt.2020.100594_b18) 2012; 223
Angel (10.1016/j.disopt.2020.100594_b20) 1998; 191
Preskill (10.1016/j.disopt.2020.100594_b4) 2018; 2
Metropolis (10.1016/j.disopt.2020.100594_b22) 1949; 44
Stadler (10.1016/j.disopt.2020.100594_b12) 2002
Lewis (10.1016/j.disopt.2020.100594_b17) 2016; 26
Verma (10.1016/j.disopt.2020.100594_b10) 2019
Lovász (10.1016/j.disopt.2020.100594_b14) 2006
Beasley (10.1016/j.disopt.2020.100594_b16) 1990; 41
Vyskocil (10.1016/j.disopt.2020.100594_b7) 2019; 12
Glover (10.1016/j.disopt.2020.100594_b2) 2019; 17
Bian (10.1016/j.disopt.2020.100594_b9) 2016; 3
Weinberger (10.1016/j.disopt.2020.100594_b21) 1990; 63
Mooney (10.1016/j.disopt.2020.100594_b3) 2019
Chicano (10.1016/j.disopt.2020.100594_b13) 2013; 19
References_xml – start-page: 183
  year: 2002
  end-page: 204
  ident: b12
  article-title: Fitness landscapes
  publication-title: Biological Evolution and Statistical Physics
– year: 2006
  ident: b14
  article-title: Diskrete Mathematik
– volume: 3
  start-page: 14
  year: 2016
  ident: b9
  article-title: Mapping constrained optimization problems to quantum annealing with application to fault diagnosis
  publication-title: Front. ICT
– volume: 63
  start-page: 325
  year: 1990
  end-page: 336
  ident: b21
  article-title: Correlated and uncorrelated fitness landscapes and how to tell the difference
  publication-title: Biol. Cybern.
– start-page: 11
  year: 2019
  end-page: 22
  ident: b8
  article-title: Embedding inequality constraints for quantum annealing optimization
  publication-title: International Workshop on Quantum Technology and Optimization Problems
– volume: 19
  start-page: 711
  year: 2013
  end-page: 728
  ident: b13
  article-title: Elementary landscape decomposition of the 0-1 unconstrained quadratic optimization
  publication-title: J. Heuristics
– volume: 223
  start-page: 595
  year: 2012
  end-page: 604
  ident: b18
  article-title: Path relinking for unconstrained binary quadratic programming
  publication-title: European J. Oper. Res.
– volume: 191
  start-page: 229
  year: 1998
  end-page: 243
  ident: b20
  article-title: Autocorrelation coefficient for the graph bipartitioning problem
  publication-title: Theoret. Comput. Sci.
– start-page: 111
  year: 2002
  end-page: 121
  ident: b11
  article-title: Solving quadratic knapsack problems by reformulation and tabu search: Single constraint case
  publication-title: Combinatorial and Global Optimization
– year: 2019
  ident: b19
  article-title: Results
– volume: 2
  start-page: 79
  year: 2018
  ident: b4
  article-title: Quantum computing in the nisq era and beyond
  publication-title: Quantum
– volume: 12
  start-page: 77
  year: 2019
  ident: b7
  article-title: Embedding equality constraints of optimization problems into a quantum annealer
  publication-title: Algorithms
– volume: 3
  year: 2005
  ident: b15
  article-title: From linearization to lazy learning: a survey of divide-and-conquer techniques for nonlinear control
  publication-title: Int. J. Comput. Cogn.
– volume: 44
  start-page: 335
  year: 1949
  end-page: 341
  ident: b22
  article-title: The monte carlo method
  publication-title: J. Amer. Statist. Assoc.
– volume: 2019
  start-page: 128
  year: 2019
  ident: b5
  article-title: Unfolding measurement distributions via quantum annealing
  publication-title: J. High Energy Phys.
– start-page: 1
  year: 2019
  end-page: 13
  ident: b10
  article-title: Optimal quadratic reformulations of fourth degree pseudo-boolean functions
  publication-title: Optim. Lett.
– volume: 41
  start-page: 1069
  year: 1990
  end-page: 1072
  ident: b16
  article-title: Or-library: distributing test problems by electronic mail
  publication-title: J. Oper. Res. Soc.
– volume: 26
  start-page: 13
  year: 2016
  end-page: 33
  ident: b17
  article-title: Probabilistic multistart with path relinking for solving the unconstrained binary quadratic problem
  publication-title: Int. J. Oper. Res.
– volume: 28
  start-page: 58
  year: 2014
  end-page: 81
  ident: b1
  article-title: The unconstrained binary quadratic programming problem: a survey
  publication-title: J. Comb. Optim.
– year: 2019
  ident: b3
  article-title: Mapping np-hard problems to restricted adiabatic quantum architectures
– start-page: 1
  year: 2018
  end-page: 11
  ident: b6
  article-title: Simple constraint embedding for quantum annealers
  publication-title: 2018 IEEE International Conference on Rebooting Computing
– volume: 17
  start-page: 335
  year: 2019
  end-page: 371
  ident: b2
  article-title: Quantum bridge analytics i: a tutorial on formulating and using qubo models
  publication-title: 4OR
– start-page: 111
  year: 2002
  ident: 10.1016/j.disopt.2020.100594_b11
  article-title: Solving quadratic knapsack problems by reformulation and tabu search: Single constraint case
– start-page: 11
  year: 2019
  ident: 10.1016/j.disopt.2020.100594_b8
  article-title: Embedding inequality constraints for quantum annealing optimization
– volume: 223
  start-page: 595
  issue: 3
  year: 2012
  ident: 10.1016/j.disopt.2020.100594_b18
  article-title: Path relinking for unconstrained binary quadratic programming
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2012.07.012
– volume: 28
  start-page: 58
  issue: 1
  year: 2014
  ident: 10.1016/j.disopt.2020.100594_b1
  article-title: The unconstrained binary quadratic programming problem: a survey
  publication-title: J. Comb. Optim.
  doi: 10.1007/s10878-014-9734-0
– volume: 2019
  start-page: 128
  issue: 11
  year: 2019
  ident: 10.1016/j.disopt.2020.100594_b5
  article-title: Unfolding measurement distributions via quantum annealing
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP11(2019)128
– year: 2019
  ident: 10.1016/j.disopt.2020.100594_b19
– volume: 63
  start-page: 325
  issue: 5
  year: 1990
  ident: 10.1016/j.disopt.2020.100594_b21
  article-title: Correlated and uncorrelated fitness landscapes and how to tell the difference
  publication-title: Biol. Cybern.
  doi: 10.1007/BF00202749
– volume: 41
  start-page: 1069
  issue: 11
  year: 1990
  ident: 10.1016/j.disopt.2020.100594_b16
  article-title: Or-library: distributing test problems by electronic mail
  publication-title: J. Oper. Res. Soc.
  doi: 10.1057/jors.1990.166
– volume: 2
  start-page: 79
  year: 2018
  ident: 10.1016/j.disopt.2020.100594_b4
  article-title: Quantum computing in the nisq era and beyond
  publication-title: Quantum
  doi: 10.22331/q-2018-08-06-79
– volume: 26
  start-page: 13
  issue: 1
  year: 2016
  ident: 10.1016/j.disopt.2020.100594_b17
  article-title: Probabilistic multistart with path relinking for solving the unconstrained binary quadratic problem
  publication-title: Int. J. Oper. Res.
  doi: 10.1504/IJOR.2016.075647
– year: 2019
  ident: 10.1016/j.disopt.2020.100594_b3
– volume: 3
  start-page: 14
  year: 2016
  ident: 10.1016/j.disopt.2020.100594_b9
  article-title: Mapping constrained optimization problems to quantum annealing with application to fault diagnosis
  publication-title: Front. ICT
  doi: 10.3389/fict.2016.00014
– start-page: 1
  year: 2019
  ident: 10.1016/j.disopt.2020.100594_b10
  article-title: Optimal quadratic reformulations of fourth degree pseudo-boolean functions
  publication-title: Optim. Lett.
– year: 2006
  ident: 10.1016/j.disopt.2020.100594_b14
– volume: 12
  start-page: 77
  issue: 4
  year: 2019
  ident: 10.1016/j.disopt.2020.100594_b7
  article-title: Embedding equality constraints of optimization problems into a quantum annealer
  publication-title: Algorithms
  doi: 10.3390/a12040077
– volume: 3
  issue: 1
  year: 2005
  ident: 10.1016/j.disopt.2020.100594_b15
  article-title: From linearization to lazy learning: a survey of divide-and-conquer techniques for nonlinear control
  publication-title: Int. J. Comput. Cogn.
– start-page: 1
  year: 2018
  ident: 10.1016/j.disopt.2020.100594_b6
  article-title: Simple constraint embedding for quantum annealers
– volume: 17
  start-page: 335
  issue: 4
  year: 2019
  ident: 10.1016/j.disopt.2020.100594_b2
  article-title: Quantum bridge analytics i: a tutorial on formulating and using qubo models
  publication-title: 4OR
  doi: 10.1007/s10288-019-00424-y
– start-page: 183
  year: 2002
  ident: 10.1016/j.disopt.2020.100594_b12
  article-title: Fitness landscapes
– volume: 19
  start-page: 711
  issue: 4
  year: 2013
  ident: 10.1016/j.disopt.2020.100594_b13
  article-title: Elementary landscape decomposition of the 0-1 unconstrained quadratic optimization
  publication-title: J. Heuristics
  doi: 10.1007/s10732-011-9170-6
– volume: 191
  start-page: 229
  issue: 1–2
  year: 1998
  ident: 10.1016/j.disopt.2020.100594_b20
  article-title: Autocorrelation coefficient for the graph bipartitioning problem
  publication-title: Theoret. Comput. Sci.
  doi: 10.1016/S0304-3975(97)00176-X
– volume: 44
  start-page: 335
  issue: 247
  year: 1949
  ident: 10.1016/j.disopt.2020.100594_b22
  article-title: The monte carlo method
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.1949.10483310
SSID ssj0034935
Score 2.3651958
Snippet Quadratic Unconstrained Binary Optimization (QUBO) modeling has become a unifying framework for solving a wide variety of both unconstrained as well as...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 100594
SubjectTerms Equality constraint
Inequality constraint
Nonlinear optimization
Pseudo-Boolean optimization
Quadratic Unconstrained Binary Optimization
Title Penalty and partitioning techniques to improve performance of QUBO solvers
URI https://dx.doi.org/10.1016/j.disopt.2020.100594
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-636X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0034935
  issn: 1572-5286
  databaseCode: AIEXJ
  dateStart: 20211209
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwELYQcIDDanmJx4J84IaCmlcdH7u7IECIhyiot8hxHKkVpBVkCz9_Z_yiooiXxCWqXLuO5rPGM9OZbwjZVZmAe6WUgeBFK0g4uDtClZgEkMqKMYV8MbrZBDs7y3o9fmEbbT_odgKsrrOnJz76VqhhDMDG0tlPwO1_FAbgM4AOT4Adnh8C_kLBlMbQKo3wexdy9XStmtShr6MJCnmLfeUAGI6X17_P9-AFxzYz3hmuf_ugXxTmFICOubPFmw6tG1TvWsvc9X0azal6NPwFvhzIBhcAKJ_KZyJeU1UvRkkydGAdhbUZy1gctGPdldBrVsPsOKWkTbxgsI_5UiPMZ410skZquh2_oL--wt1wswjUERhD4OnORSzloMHmOscHvRN378YJ1-1U_du5QkmdzTe91-uGyIRx0f1JflivgHYMmktkRtXLZHGCK3KFnFhcKeBKJ3Glz7jSZkgtrnQCVzqsKOJKLa6rpHt40P1zFNhGGIEEh7YJ4FZSGU-5EEk7Fe1KxSqSIuFFzBjyukapCtOsXfCqwP_qy1AKkZbgqIYFK1gVr5HZelirdUKTkCeKyVbZqnCmFKEAEx-sRFXFgpVyg8ROKLm0JPHYq-Q2d9mAg9yIMkdR5kaUGyTwq0aGJOWd-czJO7eGnjHgcjgib67c_PLKLbLwfMB_kdnm_p_aJvNy3PQf7nfsWfoP-kJ5_A
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Penalty+and+partitioning+techniques+to+improve+performance+of+QUBO+solvers&rft.jtitle=Discrete+optimization&rft.au=Verma%2C+Amit&rft.au=Lewis%2C+Mark&rft.date=2022-05-01&rft.pub=Elsevier+B.V&rft.issn=1572-5286&rft.eissn=1873-636X&rft.volume=44&rft_id=info:doi/10.1016%2Fj.disopt.2020.100594&rft.externalDocID=S1572528620300281
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1572-5286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1572-5286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1572-5286&client=summon