Guest editorial: Special issue on advances in deep learning based speech processing

Guest Editorial:Special Issue on Advances in Deep Learning Based Speech ProcessingXiao-Lei Zhanga, Lei Xieb, Eric Fosler-Lussierc, Emmanuel VincentdaSchool of Marine Science and Technology, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China.bAudio, Speech and Language Processing Gro...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neural networks Ročník 158; s. 328 - 330
Hlavní autoři: Zhang, Xiao-Lei, Xie, Lei, Fosler-Lussier, Eric, Vincent, Emmanuel
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Elsevier Ltd 01.01.2023
Elsevier
Témata:
ISSN:0893-6080, 1879-2782, 1879-2782
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Guest Editorial:Special Issue on Advances in Deep Learning Based Speech ProcessingXiao-Lei Zhanga, Lei Xieb, Eric Fosler-Lussierc, Emmanuel VincentdaSchool of Marine Science and Technology, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China.bAudio, Speech and Language Processing Group (ASLP@NPU), School of Computer Science, Northwestern Polytechnical University, Xi’an, Shaanxi 710072,China.cDepartment of Computer Science and Engineering, The Ohio State University, Columbus, OH 43210, USA.dUniversité de Lorraine, CNRS, Inria, LORIA, F-54000, Nancy, France.Deep learning has triggered a big revolution on speech pro-cessing. The revolution started from the successful application of deep neural networks to automatic speech recognition, and was quickly spread to other topics of speech processing, in-cluding speech analysis, speech enhancement and separation, speaker and language recognition, speech synthesis, and spoken language understanding. Such tremendous success is achieved by the long-term evolution of neural network technologies as well as the big explosion of speech data and fast development of computing power.
Bibliografie:SourceType-Scholarly Journals-1
content type line 23
ObjectType-Editorial-2
ObjectType-Commentary-1
ISSN:0893-6080
1879-2782
1879-2782
DOI:10.1016/j.neunet.2022.11.033