Local and Global Approximation Theorems for Positive Linear Operators
In this paper we bridge local and global approximation theorems for positive linear operators via Ditzian–Totik moduliω2φ(f,δ) of second order whereby the step-weightsφare functions whose squares are concave. Both direct and converse theorems are derived. In particular we investigate the situation f...
Gespeichert in:
| Veröffentlicht in: | Journal of approximation theory Jg. 94; H. 3; S. 396 - 419 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Inc
01.09.1998
|
| ISSN: | 0021-9045, 1096-0430 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In this paper we bridge local and global approximation theorems for positive linear operators via Ditzian–Totik moduliω2φ(f,δ) of second order whereby the step-weightsφare functions whose squares are concave. Both direct and converse theorems are derived. In particular we investigate the situation for exponential-type and Bernstein-type operators. |
|---|---|
| ISSN: | 0021-9045 1096-0430 |
| DOI: | 10.1006/jath.1998.3212 |