Local and Global Approximation Theorems for Positive Linear Operators

In this paper we bridge local and global approximation theorems for positive linear operators via Ditzian–Totik moduliω2φ(f,δ) of second order whereby the step-weightsφare functions whose squares are concave. Both direct and converse theorems are derived. In particular we investigate the situation f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of approximation theory Jg. 94; H. 3; S. 396 - 419
1. Verfasser: Felten, Michael
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 01.09.1998
ISSN:0021-9045, 1096-0430
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we bridge local and global approximation theorems for positive linear operators via Ditzian–Totik moduliω2φ(f,δ) of second order whereby the step-weightsφare functions whose squares are concave. Both direct and converse theorems are derived. In particular we investigate the situation for exponential-type and Bernstein-type operators.
ISSN:0021-9045
1096-0430
DOI:10.1006/jath.1998.3212