A parallel algorithm for achieving the Smith Normal Form of an integer matrix

The Smith Normal Form of a matrix is a diagonal representation which contains the invariant factors of the matrix in its diagonal. In this paper, a new algorithm, which exploits parallelism by considering data dependencies, is proposed. In case of sparse matrices a high degree of parallelism can be...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Parallel computing Ročník 22; číslo 10; s. 1399 - 1412
Hlavní autoři: Neumann, Ingmar, Wilhelmi, Wolfgang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.12.1996
Témata:
ISSN:0167-8191, 1872-7336
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The Smith Normal Form of a matrix is a diagonal representation which contains the invariant factors of the matrix in its diagonal. In this paper, a new algorithm, which exploits parallelism by considering data dependencies, is proposed. In case of sparse matrices a high degree of parallelism can be reached.
AbstractList The Smith Normal Form of a matrix is a diagonal representation which contains the invariant factors of the matrix in its diagonal. In this paper, a new algorithm, which exploits parallelism by considering data dependencies, is proposed. In case of sparse matrices a high degree of parallelism can be reached.
Author Wilhelmi, Wolfgang
Neumann, Ingmar
Author_xml – sequence: 1
  givenname: Ingmar
  surname: Neumann
  fullname: Neumann, Ingmar
  email: in@cs.tu-berlin.de
  organization: Institut für Technische Informatik, Technische Universitãt Berlin, Franklin Str. 28/29, 10587 Berlin, Germany
– sequence: 2
  givenname: Wolfgang
  surname: Wilhelmi
  fullname: Wilhelmi, Wolfgang
  organization: SATCON Gmbh, Teltow, Germany
BookMark eNqFkD1PwzAQhi0EEm3hJyB5QjAE7Dj1x4SqigJSgaEwW45zbo2SuNhpBf-etEWsLPcO97wn3TNEx21oAaELSm4oofx20Q-RSaroleLXhJCCZOwIDagUeSYY48do8IecomFKHz3EC0kG6HmC1yaauoYam3oZou9WDXYhYmNXHra-XeJuBXjR9Av8EmJjajzrAweHTYt928ESIm5MF_3XGTpxpk5w_psj9D67f5s-ZvPXh6fpZJ7ZXPIuc6QyMne5LKuyVMpZVRSuNJWjFQNVcqNKUUoObFwwK1whJCdCSWHzsSm4pWyELg931zF8biB1uvHJQl2bFsIm6ZwVY6IU6cHxAbQxpBTB6XX0jYnfmhK9k6f38vTOjFZc7-Vp1vfuDj3ov9h6iDpZD62Fykewna6C_-fCD3tkeH4
Cites_doi 10.1007/BF01934279
ContentType Journal Article
Copyright 1996
Copyright_xml – notice: 1996
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/S0167-8191(96)00040-3
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7336
EndPage 1412
ExternalDocumentID 10_1016_S0167_8191_96_00040_3
S0167819196000403
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
29O
4.4
457
4G.
5VS
6OB
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
WH7
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c286t-f0da82f28bdbb99fc944fbadf1d3e9b6a9b7b86e3543c7f478607987c25a46c13
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=10_1016_S0167_8191_96_00040_3&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-8191
IngestDate Sat Sep 27 23:50:04 EDT 2025
Sat Nov 29 03:58:55 EST 2025
Fri Feb 23 02:30:41 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Parallel algorithms
Algebraic topology
Sparse matrix computations
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c286t-f0da82f28bdbb99fc944fbadf1d3e9b6a9b7b86e3543c7f478607987c25a46c13
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 23450990
PQPubID 23500
PageCount 14
ParticipantIDs proquest_miscellaneous_23450990
crossref_primary_10_1016_S0167_8191_96_00040_3
elsevier_sciencedirect_doi_10_1016_S0167_8191_96_00040_3
PublicationCentury 1900
PublicationDate 1996-12-01
PublicationDateYYYYMMDD 1996-12-01
PublicationDate_xml – month: 12
  year: 1996
  text: 1996-12-01
  day: 01
PublicationDecade 1990
PublicationTitle Parallel computing
PublicationYear 1996
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Wilhelmi (BIB3) 1991
Froeberg, Sundstroem (BIB1) 1967; 7
Gantmacher (BIB2) 1970
Zurmühl (BIB4) 1964
Gantmacher (10.1016/S0167-8191(96)00040-3_BIB2) 1970
Wilhelmi (10.1016/S0167-8191(96)00040-3_BIB3) 1991
Froeberg (10.1016/S0167-8191(96)00040-3_BIB1) 1967; 7
Zurmühl (10.1016/S0167-8191(96)00040-3_BIB4) 1964
References_xml – year: 1970
  ident: BIB2
  publication-title: Matrizenrechnung 1
– year: 1964
  ident: BIB4
  publication-title: Matrizen
– volume: 7
  start-page: 163
  year: 1967
  end-page: 169
  ident: BIB1
  article-title: Algol programming: Smith's normal form
  publication-title: Bit
– year: 1991
  ident: BIB3
  article-title: Image interpretation by algebraic topology
  publication-title: Proc. CAIP 1991
– year: 1970
  ident: 10.1016/S0167-8191(96)00040-3_BIB2
– volume: 7
  start-page: 163
  year: 1967
  ident: 10.1016/S0167-8191(96)00040-3_BIB1
  article-title: Algol programming: Smith's normal form
  publication-title: Bit
  doi: 10.1007/BF01934279
– year: 1991
  ident: 10.1016/S0167-8191(96)00040-3_BIB3
  article-title: Image interpretation by algebraic topology
– year: 1964
  ident: 10.1016/S0167-8191(96)00040-3_BIB4
SSID ssj0006480
Score 1.4522449
Snippet The Smith Normal Form of a matrix is a diagonal representation which contains the invariant factors of the matrix in its diagonal. In this paper, a new...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 1399
SubjectTerms Algebraic topology
Parallel algorithms
Sparse matrix computations
Title A parallel algorithm for achieving the Smith Normal Form of an integer matrix
URI https://dx.doi.org/10.1016/S0167-8191(96)00040-3
https://www.proquest.com/docview/23450990
Volume 22
WOSCitedRecordID wos10_1016_S0167_8191_96_00040_3&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7336
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006480
  issn: 0167-8191
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELYg5cCFN2opDx84gKqFrNfrxzFCrQCJqhJF5Gbter1JpH1USVrl53f82IeKePTAZRNZWsfyfJkZe76ZQehtbHJmBDERN4WJqNbE6cGICjB3kmnJTOGaTfDTUzGfy7OQXbJx7QR404jdTl78V1HDGAjbps7eQtz9pDAA30Ho8ASxw_OfBD87suW8q8pY7vGihcP_svZcSb1cmasuPcpdqdiwTQ1COoEPxwhofP0Isz6qbe3-3dh3Peum1a4TRGfz3E2yDQX4HLJmUWcD4XdVLU1VO8bAz7YqF1l4qQiJd2zE2QhXj6BS7fFurDsJGWNkOtKE4FnKkVWNqWdL_6Kx_eXB93528KsljNhephQsxGCmutD8DevVcwpHdDXGlZ1KSUvZg2lUchftEZ5KMUF7sy_H86-9sWbUNdfrf35I8vo4rOmdZO_Den7nvtww5M47OX-EHoRjBZ55ODxGd0zzBD3sWnbgoMGfom8z3KED9-jAgA7cowMDOrBDB_bowBYduC1x1uCADuzR8Qz9ODk-__Q5Ch01Ik0E20bltMgEKYnIizyXstSS0jLPijIuEiNzlsmc54KZJKWJ5iXlgk25FFyTNKNMx8lzNGnaxuwjrAmPpZ5q8Pi0LY-Vg6JP0pgV4IEmhhYH6EO3UerCF05RfxTRARLddqrg_XmvTgFU_vbqm277FWhHG_LKGtNebhRJaGpDvy9uu5pDdH_4E7xEk-360rxC9_TVdrVZvw4ougbrKIBy
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+parallel+algorithm+for+achieving+the+Smith+Normal+Form+of+an+integer+matrix&rft.jtitle=Parallel+computing&rft.au=Neumann%2C+Ingmar&rft.au=Wilhelmi%2C+Wolfgang&rft.date=1996-12-01&rft.issn=0167-8191&rft.volume=22&rft.issue=10&rft.spage=1399&rft.epage=1412&rft_id=info:doi/10.1016%2FS0167-8191%2896%2900040-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_S0167_8191_96_00040_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8191&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8191&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8191&client=summon