The minimizer of the sum of two strongly convex functions
The optimization problem concerning the determination of the minimizer for the sum of convex functions holds significant importance in the realm of distributed and decentralized optimization. In scenarios where full knowledge of the functions is not available, limiting information to individual mini...
Uložené v:
| Vydané v: | Optimization Ročník 74; číslo 16; s. 4357 - 4397 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Philadelphia
Taylor & Francis
10.12.2025
Taylor & Francis LLC |
| Predmet: | |
| ISSN: | 0233-1934, 1029-4945 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | The optimization problem concerning the determination of the minimizer for the sum of convex functions holds significant importance in the realm of distributed and decentralized optimization. In scenarios where full knowledge of the functions is not available, limiting information to individual minimizers and convexity parameters - either due to privacy concerns or the nature of solution analysis - necessitates an exploration of the region encompassing potential minimizers based solely on these known quantities. The characterization of this region becomes notably intricate when dealing with multivariate strongly convex functions compared to the univariate case. This paper contributes outer and inner approximations for the region harboring the minimizer of the sum of two strongly convex functions, given a constraint on the norm of the gradient at the minimizer of the sum. Notably, we explicitly delineate the boundaries and interiors of both the outer and inner approximations. Intriguingly, the boundaries as well as the interiors turn out to be identical. Furthermore, we establish that the boundary of the region containing potential minimizers aligns with that of the outer and inner approximations. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0233-1934 1029-4945 |
| DOI: | 10.1080/02331934.2024.2402923 |