Approximate solutions for robust multiobjective optimization programming in Asplund spaces

In this paper, we study a nonsmooth/nonconvex multiobjective optimization problem with uncertain constraints in arbitrary Asplund spaces. We first provide necessary optimality condition in a fuzzy form for approximate weakly robust efficient solutions and then establish necessary optimality theorem...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Optimization Ročník 73; číslo 2; s. 329 - 357
Hlavní autoři: Saadati, Maryam, Oveisiha, Morteza
Médium: Journal Article
Jazyk:angličtina
Vydáno: Philadelphia Taylor & Francis 01.02.2024
Taylor & Francis LLC
Témata:
ISSN:0233-1934, 1029-4945
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we study a nonsmooth/nonconvex multiobjective optimization problem with uncertain constraints in arbitrary Asplund spaces. We first provide necessary optimality condition in a fuzzy form for approximate weakly robust efficient solutions and then establish necessary optimality theorem for approximate weakly robust quasi-efficient solutions of the problem in the sense of the limiting subdifferential by exploiting a fuzzy optimality condition in terms of the Fréchet subdifferential. Sufficient conditions for approximate (weakly) robust quasi-efficient solutions to such a problem are also driven under the new concept of generalized pseudo convex functions. Finally, we address an approximate Mond-Weir-type dual robust problem to the reference problem and explore weak, strong, and converse duality properties under assumptions of pseudo convexity.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0233-1934
1029-4945
DOI:10.1080/02331934.2022.2105214