Lagrange multiplier rules for weak approximate Pareto solutions to constrained vector optimization problems with variable ordering structures
In this paper, we consider the weak approximate solutions to constrained vector optimization problems with variable ordering structures. In terms of abstract subdifferentials, normal cones and coderivatives, we establish Lagrange rules for this kind of solutions.
Uložené v:
| Vydané v: | Optimization Ročník 71; číslo 7; s. 2131 - 2155 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Philadelphia
Taylor & Francis
03.07.2022
Taylor & Francis LLC |
| Predmet: | |
| ISSN: | 0233-1934, 1029-4945 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In this paper, we consider the weak approximate solutions to constrained vector optimization problems with variable ordering structures. In terms of abstract subdifferentials, normal cones and coderivatives, we establish Lagrange rules for this kind of solutions. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0233-1934 1029-4945 |
| DOI: | 10.1080/02331934.2020.1857753 |