Lagrange multiplier rules for weak approximate Pareto solutions to constrained vector optimization problems with variable ordering structures

In this paper, we consider the weak approximate solutions to constrained vector optimization problems with variable ordering structures. In terms of abstract subdifferentials, normal cones and coderivatives, we establish Lagrange rules for this kind of solutions.

Uloženo v:
Podrobná bibliografie
Vydáno v:Optimization Ročník 71; číslo 7; s. 2131 - 2155
Hlavní autoři: Hu, Chunhai, Zhu, Jiangxing
Médium: Journal Article
Jazyk:angličtina
Vydáno: Philadelphia Taylor & Francis 03.07.2022
Taylor & Francis LLC
Témata:
ISSN:0233-1934, 1029-4945
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we consider the weak approximate solutions to constrained vector optimization problems with variable ordering structures. In terms of abstract subdifferentials, normal cones and coderivatives, we establish Lagrange rules for this kind of solutions.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0233-1934
1029-4945
DOI:10.1080/02331934.2020.1857753