On the localization of the spectrum of some perturbations of a two-dimensional harmonic oscillator

In this paper, we study the localization of the discrete spectrum of certain perturbations of a two-dimensional harmonic oscillator. The convergence of the expansion of the source function in terms of the eigenfunctions of a two-dimensional harmonic oscillator is investigated. A representation of Gr...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Complex variables and elliptic equations Ročník 66; číslo 6-7; s. 1194 - 1208
Hlavní autoři: Kanguzhin, Baltabek, Fazullin, Ziganur
Médium: Journal Article
Jazyk:angličtina
Vydáno: Colchester Taylor & Francis 03.07.2021
Taylor & Francis Ltd
Témata:
ISSN:1747-6933, 1747-6941
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, we study the localization of the discrete spectrum of certain perturbations of a two-dimensional harmonic oscillator. The convergence of the expansion of the source function in terms of the eigenfunctions of a two-dimensional harmonic oscillator is investigated. A representation of Green's function of a two-dimensional harmonic oscillator is obtained. The singularities of Green's function are highlighted. The well-posed definition of the maximal operator generated by a two-dimensional harmonic oscillator on a specially extended domain of definition is given. Then, we describe everywhere solvable invertible restrictions of the maximal operator. We establish that the eigenvalues of a harmonic oscillator will also be the eigenvalues of well-posed restrictions. The results are supported by illustrative examples.
AbstractList In this paper, we study the localization of the discrete spectrum of certain perturbations of a two-dimensional harmonic oscillator. The convergence of the expansion of the source function in terms of the eigenfunctions of a two-dimensional harmonic oscillator is investigated. A representation of Green's function of a two-dimensional harmonic oscillator is obtained. The singularities of Green's function are highlighted. The well-posed definition of the maximal operator generated by a two-dimensional harmonic oscillator on a specially extended domain of definition is given. Then, we describe everywhere solvable invertible restrictions of the maximal operator. We establish that the eigenvalues of a harmonic oscillator will also be the eigenvalues of well-posed restrictions. The results are supported by illustrative examples.
Author Kanguzhin, Baltabek
Fazullin, Ziganur
Author_xml – sequence: 1
  givenname: Baltabek
  surname: Kanguzhin
  fullname: Kanguzhin, Baltabek
  email: kanguzhin53@gmail.com
  organization: Al-Farabi Kazakh National University
– sequence: 2
  givenname: Ziganur
  surname: Fazullin
  fullname: Fazullin, Ziganur
  organization: Bashkir State University
BookMark eNp9kE9rwzAMxc3oYO22jzAI7JxOshPHuW2U_YNCL9vZOI5NU5K4s11K9-mXtN2OO0l6enqI34xMetcbQu4Q5ggCHrDICl4yNqdAcY5C5EzwCzId9ZSXGU7-esauyCyEDUCWZxympFr1SVybpHVatc23io3rE2ePWtgaHf2uG-fgOpNsjY87Xx1NYVRVEvcurZvO9GHQVJusle9c3-jEBd20rYrO35BLq9pgbs_1mny-PH8s3tLl6vV98bRMNRU8pnWVQaENMFuDrjljtKYUQNSl5VYgEwKHrYICEW2FmmkKlQa0GeQl5ZZdk_tT7ta7r50JUW7czg9PBUlzWnIsEcXgyk8u7V0I3li59U2n_EEiyBGn_MUpR5zyjHO4ezzdNb11vlN759taRnVonbde9boJkv0f8QOvmX6q
Cites_doi 10.1070/SM2001v192n05ABEH000566
10.3103/S1066369X14020029
10.1134/s0012266115120058
10.3103/s1055134420030013
10.1090/S0002-9947-1926-1501372-6
10.1134/S1064562415010019
10.17377/smzh.2016.57.209
10.1090/S0002-9947-1908-1500818-6
10.1007/BF01076085
10.1090/S0002-9947-1908-1500810-1
10.4213/mzm8767
10.1134/S0012266119100082
ContentType Journal Article
Copyright 2021 Informa UK Limited, trading as Taylor & Francis Group 2021
2021 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2021 Informa UK Limited, trading as Taylor & Francis Group 2021
– notice: 2021 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1080/17476933.2021.1885386
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1747-6941
EndPage 1208
ExternalDocumentID 10_1080_17476933_2021_1885386
1885386
Genre Research Article
GroupedDBID .7F
.QJ
0BK
0R~
29F
2DF
30N
4.4
5GY
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMVHM
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
NY~
O9-
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TEJ
TFL
TFT
TFW
TTHFI
TUROJ
TWF
UPT
UT5
UU3
ZGOLN
~S~
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c286t-db407ce03fd0cd6332d22008d9f6f813881ce0a07111fb1c3c20bc01f405926f3
IEDL.DBID TFW
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000618675000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1747-6933
IngestDate Wed Aug 13 06:38:45 EDT 2025
Sat Nov 29 06:14:05 EST 2025
Mon Oct 20 23:48:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6-7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c286t-db407ce03fd0cd6332d22008d9f6f813881ce0a07111fb1c3c20bc01f405926f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2529619118
PQPubID 186201
PageCount 15
ParticipantIDs proquest_journals_2529619118
informaworld_taylorfrancis_310_1080_17476933_2021_1885386
crossref_primary_10_1080_17476933_2021_1885386
PublicationCentury 2000
PublicationDate 2021-07-03
PublicationDateYYYYMMDD 2021-07-03
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-03
  day: 03
PublicationDecade 2020
PublicationPlace Colchester
PublicationPlace_xml – name: Colchester
PublicationTitle Complex variables and elliptic equations
PublicationYear 2021
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0010
CIT0021
CIT0020
CIT0001
Hromov AP. (CIT0006) 2004; 10
CIT0012
Il'in VA. (CIT0015) 1958; 22
CIT0011
Kokebaev BK (CIT0017) 1982; 5
Keldysh MV. (CIT0005) 1951; 77
Il'in VA. (CIT0013) 1950; 74
Il'in VA. (CIT0014) 1957; 41
Kokebaev BK (CIT0018) 1983; 271
CIT0003
CIT0002
CIT0016
CIT0004
CIT0007
CIT0009
Kokebaev BK (CIT0019) 1983; 110
CIT0008
References_xml – volume: 77
  start-page: 11
  issue: 1
  year: 1951
  ident: CIT0005
  publication-title: Dokl Akad Nauk SSSR
– ident: CIT0016
  doi: 10.1070/SM2001v192n05ABEH000566
– ident: CIT0020
  doi: 10.3103/S1066369X14020029
– volume: 5
  start-page: 24
  year: 1982
  ident: CIT0017
  publication-title: Izv Akad NaukKaz SSR, Ser Fiz-Mat
– ident: CIT0010
  doi: 10.1134/s0012266115120058
– ident: CIT0012
  doi: 10.3103/s1055134420030013
– volume: 74
  start-page: 413
  issue: 3
  year: 1950
  ident: CIT0013
  publication-title: Doklady AN SSSR
– volume: 110
  start-page: 24
  issue: 1
  year: 1983
  ident: CIT0019
  publication-title: Izv Akad NaukKaz SSR, Ser Fiz-Mat
– ident: CIT0004
  doi: 10.1090/S0002-9947-1926-1501372-6
– ident: CIT0009
  doi: 10.1134/S1064562415010019
– volume: 22
  start-page: 49
  issue: 1
  year: 1958
  ident: CIT0015
  publication-title: Izv USSR Acad Sci, Ser Mat
– ident: CIT0003
– ident: CIT0008
  doi: 10.17377/smzh.2016.57.209
– ident: CIT0002
  doi: 10.1090/S0002-9947-1908-1500818-6
– volume: 10
  start-page: 3
  year: 2004
  ident: CIT0006
  publication-title: CMFD
– volume: 271
  start-page: 1307
  year: 1983
  ident: CIT0018
  publication-title: Dokl Akad Nauk SSSR
– ident: CIT0021
  doi: 10.1007/BF01076085
– ident: CIT0001
  doi: 10.1090/S0002-9947-1908-1500810-1
– volume: 41
  start-page: 459
  issue: 4
  year: 1957
  ident: CIT0014
  publication-title: Matemat Sbornik
– ident: CIT0007
  doi: 10.4213/mzm8767
– ident: CIT0011
  doi: 10.1134/S0012266119100082
SSID ssj0045460
Score 2.207805
Snippet In this paper, we study the localization of the discrete spectrum of certain perturbations of a two-dimensional harmonic oscillator. The convergence of the...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Index Database
Publisher
StartPage 1194
SubjectTerms asymptotic distributions of eigenvalues in context of PDEs
boundary value problems for second-order elliptic equations
Eigenvalues
Eigenvectors
estimates of eigenvalues in the context of PDEs
Green's functions
Green's functions for elliptic equations
harmonic analysis of several complex variables
Harmonic oscillators
Localization
meromorphic functions of several complex variables
Perturbation
Well posed problems
Title On the localization of the spectrum of some perturbations of a two-dimensional harmonic oscillator
URI https://www.tandfonline.com/doi/abs/10.1080/17476933.2021.1885386
https://www.proquest.com/docview/2529619118
Volume 66
WOSCitedRecordID wos000618675000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 1747-6941
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0045460
  issn: 1747-6933
  databaseCode: TFW
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQADb0ShIA-sKXGcpPaIEBUDFIYC3awktiWGJlUT4O9z5ziICiEGGO3IVuR723ffEXKeZWFiBWg_HfIiiLXNAxkbGyAqpjaGaeGyfJ9uR5OJmM3kg88mrH1aJcbQtgWKcLoahTvL6y4j7gKcaOzgxyG6i9iQCbA4AkG3wfSjaE7Hz50ujpM49SWRowCXdDU8P-2yYp1WsEu_6WpngMbb__DrO2TLe5_0smWXXbJmyj2yefcJ3Vrvk_y-pDCkzsj5Ik1aWTfnyjKXr3Mc19Xc0IVZgsnK21s_nM1o814FGlsGtHAfFKGxEX6XImom8BzE-AfkcXw9vboJfCOGoIhE2gQ6h7APG4tZHRY65TzSEeZNaGlTIDQXgsHXDLwVxmzOCl5EYV6EzII3KKPU8kPSK6vSHBGayESYWDOZ4RNtOJIms1bwQnCus1wnfTLsCKAWLd6GYh7GtDs8hYen_OH1ifxKJtW4iw7bdiVR_Je1g46myoturSJ8iYYolonjP2x9QjZw6BJ7-YD0gDjmlKwXb81LvTxzTPoBDEzkhQ
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NT8MgFCc6TdSD38b5ycErs5S2g6MxLjNu8zJ1N9IWSDysXdaq_7482potxnjQIxAI4T3eB7z3ewhdxbEXGm6ln_JYSgJlEiICbQigYiqtqeIuyvd50B2N-GQiFnNhIKwSfGhTAUU4WQ2XGx6jm5C4a2tFQwk_Zt07n3YotyqHR6toLbS6FvDzx72XRhoHYRDVSZFdAnOaLJ6fllnST0vopd-ktVNBvZ3_2Pwu2q4NUHxTccweWtHZPtoafqG3FgcoecywbWKn5-o8TZwb1-cyM-dvU2gX-VTjmZ5brZVUD3_QG-PyIycKqgZUiB8Y0LEBgRcDcKZlO-vmH6Kn3t34tk_qWgwk9XlUEpVYzw9qixnlpSpizFc-hE4oYSJLa8Y5taOxNVgoNQlNWep7SepRYw1C4UeGHaFWlmf6GOFQhFwHiooYfmm9rtCxMZylnDEVJypso05DATmrIDckrZFMm8OTcHiyPrw2Eot0kqV76zBVYRLJfpl71hBV1re3kD58RltHlvKTPyx9iTb64-FADu5HD6doE4ZcnC87Qy1LKH2O1tP38rWYXziO_QSPOeiv
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagIAQDb0ShgAfWQBwnqTMioAJRSocC3azED4mhSdUE-Pv4HAdRIcQAo23Zsnzne9h33yF0mqZ-pJmRftKnwgulzrwkVNoDVEypFJHMRvk-9buDARuPk6GLJixdWCX40LoGirCyGi73VOomIu7cGNFQwY8a7y4gZ4QZjcPiRbRkTOcYmHzUe26EcRiFscuJ7Howp0ni-WmZOfU0B176TVhbDdTb-Ie9b6J1Z37ii5pfttCCyrfR2v0ndmu5g7KHHJsmtlrOZWniQts-m5c5e51AuywmCk_VzOisrH72g94UV--FJ6FmQI33gQEbG_B3McBmGqYzTv4ueuxdjy5vPFeJwRMBiytPZsbvg8piWvpCxpQGMoDACZno2FCaMkbMaGrMFUJ0RgQVgZ8Jn2hjDiZBrOkeauVFrvYRjpKIqVCSJIU_Wr-bqFRrRgWjVKaZjNrorCEAn9aAG5w4HNPm8DgcHneH10bJVzLxyr506LosCae_zO00NOXu7pY8gK9o48YSdvCHpU_QyvCqx_u3g7tDtAojNsiXdlDL0EkdoWXxVr2Us2PLrx_iz-dh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+localization+of+the+spectrum+of+some+perturbations+of+a+two-dimensional+harmonic+oscillator&rft.jtitle=Complex+variables+and+elliptic+equations&rft.au=Kanguzhin%2C+Baltabek&rft.au=Fazullin%2C+Ziganur&rft.date=2021-07-03&rft.pub=Taylor+%26+Francis&rft.issn=1747-6933&rft.eissn=1747-6941&rft.volume=66&rft.issue=6-7&rft.spage=1194&rft.epage=1208&rft_id=info:doi/10.1080%2F17476933.2021.1885386&rft.externalDocID=1885386
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1747-6933&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1747-6933&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1747-6933&client=summon