On the localization of the spectrum of some perturbations of a two-dimensional harmonic oscillator
In this paper, we study the localization of the discrete spectrum of certain perturbations of a two-dimensional harmonic oscillator. The convergence of the expansion of the source function in terms of the eigenfunctions of a two-dimensional harmonic oscillator is investigated. A representation of Gr...
Uloženo v:
| Vydáno v: | Complex variables and elliptic equations Ročník 66; číslo 6-7; s. 1194 - 1208 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Colchester
Taylor & Francis
03.07.2021
Taylor & Francis Ltd |
| Témata: | |
| ISSN: | 1747-6933, 1747-6941 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, we study the localization of the discrete spectrum of certain perturbations of a two-dimensional harmonic oscillator. The convergence of the expansion of the source function in terms of the eigenfunctions of a two-dimensional harmonic oscillator is investigated. A representation of Green's function of a two-dimensional harmonic oscillator is obtained. The singularities of Green's function are highlighted. The well-posed definition of the maximal operator generated by a two-dimensional harmonic oscillator on a specially extended domain of definition is given. Then, we describe everywhere solvable invertible restrictions of the maximal operator. We establish that the eigenvalues of a harmonic oscillator will also be the eigenvalues of well-posed restrictions. The results are supported by illustrative examples. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1747-6933 1747-6941 |
| DOI: | 10.1080/17476933.2021.1885386 |