Linear programming with nonparametric penalty programs and iterated thresholding

It is known  [Mangasarian, A Newton method for linear programming, J. Optim. Theory Appl. 121 (2004), pp. 1-18] that every linear program can be solved exactly by minimizing an unconstrained quadratic penalty program. The penalty program is parameterized by a scalar t>0, and one is able to solve...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Optimization methods & software Ročník 38; číslo 1; s. 107 - 127
Hlavní autori: Kline, Jeffery, Fung, Glenn Martin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Abingdon Taylor & Francis 02.01.2023
Taylor & Francis Ltd
Predmet:
ISSN:1055-6788, 1029-4937
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:It is known  [Mangasarian, A Newton method for linear programming, J. Optim. Theory Appl. 121 (2004), pp. 1-18] that every linear program can be solved exactly by minimizing an unconstrained quadratic penalty program. The penalty program is parameterized by a scalar t>0, and one is able to solve the original linear program in this manner when t is selected larger than a finite, but unknown  . In this paper, we show that every linear program can be solved using the solution to a parameter-free penalty program. We also characterize the solutions to the quadratic penalty programs using fixed points of certain nonexpansive maps. This leads to an iterative thresholding algorithm that converges to a desired limit point. We show in numerical experiments that this iterative method can outperform a variety of standard quadratic program solvers. Finally, we show that for every , the solution one obtains by solving a parameterized penalty program is guaranteed to lie in the feasible set of the original linear program.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1055-6788
1029-4937
DOI:10.1080/10556788.2022.2117356