Mathematical programming models for some smallest-world problems

Given a weighted graph G, in the minimum-cost-edge-selection problem (MCES), a minimum weighted set of edges is chosen subject to an upper bound on the diameter of graph G. Similarly, in the minimum-diameter-edge-selection problem (MDES), a set of edges is chosen to minimize the diameter subject to...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nonlinear analysis: real world applications Ročník 6; číslo 5; s. 955 - 961
Hlavní autoři: Rosenberger, Jay M., Corley, H.W.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.12.2005
Témata:
ISSN:1468-1218, 1878-5719
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Given a weighted graph G, in the minimum-cost-edge-selection problem (MCES), a minimum weighted set of edges is chosen subject to an upper bound on the diameter of graph G. Similarly, in the minimum-diameter-edge-selection problem (MDES), a set of edges is chosen to minimize the diameter subject to an upper bound on their total weight. These problems are shown to be equivalent and proven to be NP-complete. MCES is then formulated as a 0–1 integer programming problem. The problems MCES and MDES provide models for determining smallest-world networks and for measuring the “small-worldness” of graphs.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1468-1218
1878-5719
DOI:10.1016/j.nonrwa.2005.02.001