Chern character, infinitesimal Abel-Jacobi map and semi-regularity map

Using Chern character, we construct a natural transformation from the local Hilbert functor to a functor of Artin rings defined from Hochschild homology. This enables us to realize (after slight modification) the infinitesimal Abel-Jacobi map as a morphism between tangent spaces of two functors of A...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Communications in algebra Ročník 52; číslo 8; s. 3521 - 3541
Hlavní autor: Yang, Sen
Médium: Journal Article
Jazyk:angličtina
Vydáno: Abingdon Taylor & Francis 02.08.2024
Taylor & Francis Ltd
Témata:
ISSN:0092-7872, 1532-4125
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Using Chern character, we construct a natural transformation from the local Hilbert functor to a functor of Artin rings defined from Hochschild homology. This enables us to realize (after slight modification) the infinitesimal Abel-Jacobi map as a morphism between tangent spaces of two functors of Artin rings and also enables us to reconstruct the semi-regularity map together with giving a different proof of a theorem of Bloch stating that the semi-regularity map annihilates certain obstructions to embedded deformations of a closed subvariety which is a locally complete intersection.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0092-7872
1532-4125
DOI:10.1080/00927872.2024.2321514