Hypergeometric L-functions in average polynomial time, II

We describe an algorithm for computing, for all primes p ≤ X , the trace of Frobenius at p of a hypergeometric motive over Q in time quasilinear in X . This involves computing the trace modulo p e for suitable e ; as in our previous work treating the case e = 1 , we combine the Beukers–Cohen–Mellit...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Research in number theory Ročník 11; číslo 1
Hlavní autoři: Costa, Edgar, Kedlaya, Kiran S., Roe, David
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.03.2025
Témata:
ISSN:2522-0160, 2363-9555
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We describe an algorithm for computing, for all primes p ≤ X , the trace of Frobenius at p of a hypergeometric motive over Q in time quasilinear in X . This involves computing the trace modulo p e for suitable e ; as in our previous work treating the case e = 1 , we combine the Beukers–Cohen–Mellit trace formula with average polynomial time techniques of Harvey and Harvey–Sutherland. The key new ingredient for e > 1 is an expanded version of Harvey’s “generic prime” construction, making it possible to incorporate certain p -adic transcendental functions into the computation; one of these is the p -adic Gamma function, whose average polynomial time computation is an intermediate step which may be of independent interest. We also provide an implementation in Sage and discuss the remaining computational issues around tabulating hypergeometric L -series.
ISSN:2522-0160
2363-9555
DOI:10.1007/s40993-024-00593-8