The -product of domains in several complex variables

In this article, we investigate the problem of computing the $ * $ ∗ -product of domains in $ \mathbb {C}^N $ C N . Assuming that $ 0\in G\subset \mathbb {C}^N $ 0 ∈ G ⊂ C N is an arbitrary Runge domain and $ 0\in D\subset \mathbb {C}^N $ 0 ∈ D ⊂ C N is a bounded, smooth and linearly convex domain (...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Complex variables and elliptic equations Ročník 69; číslo 1; s. 35 - 46
Hlavný autor: Zając, Sylwester
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Colchester Taylor & Francis 02.01.2024
Taylor & Francis Ltd
Predmet:
ISSN:1747-6933, 1747-6941
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this article, we investigate the problem of computing the $ * $ ∗ -product of domains in $ \mathbb {C}^N $ C N . Assuming that $ 0\in G\subset \mathbb {C}^N $ 0 ∈ G ⊂ C N is an arbitrary Runge domain and $ 0\in D\subset \mathbb {C}^N $ 0 ∈ D ⊂ C N is a bounded, smooth and linearly convex domain (or a non-decreasing union of such ones), we establish a geometric relation between $ D*G $ D ∗ G and another domain in $ \mathbb {C}^N $ C N which is 'extremal' (in an appropriate sense) with respect to a special coefficient multiplier dependent only on the dimension N. Next, for N = 2, we derive a characterization of the latter domain expressed in terms of planar geometry. These two results, when combined together, give a formula which allows to calculate $ D*G $ D ∗ G for two-dimensional domains D and G satisfying the outlined assumptions.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1747-6933
1747-6941
DOI:10.1080/17476933.2022.2107635