The Rivest–Vuillemin Conjecture on Monotone Boolean Functions Is True for Ten Variables
A Boolean function f(x1, …, xn) is elusive if every decision tree evaluating f must examine all n variables in the worst case. Rivest and Vuillemin conjectured that every nontrivial monotone weakly symmetric Boolean function is elusive. In this note, we show that this conjecture is true for n=10....
Uloženo v:
| Vydáno v: | Journal of Complexity Ročník 15; číslo 4; s. 526 - 536 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
01.12.1999
|
| Témata: | |
| ISSN: | 0885-064X, 1090-2708 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | A Boolean function f(x1, …, xn) is elusive if every decision tree evaluating f must examine all n variables in the worst case. Rivest and Vuillemin conjectured that every nontrivial monotone weakly symmetric Boolean function is elusive. In this note, we show that this conjecture is true for n=10. |
|---|---|
| ISSN: | 0885-064X 1090-2708 |
| DOI: | 10.1006/jcom.1999.0521 |