Finite Matrix Groups over Nilpotent Group Rings

We study groups of matricesSGLn(ZΓ) of augmentation one over the integral group ring ZΓ of a nilpotent group Γ. We relate the torsion ofSGLn(ZΓ) to the torsion of Γ. We prove that all abelianp-subgroups ofSGLn(ZΓ) can be stably diagonalized. Also, all finite subgroups ofSGLn(ZΓ) can be embedded into...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of algebra Ročník 181; číslo 2; s. 565 - 583
Hlavní autori: Marciniak, Zbigniew S., Sehgal, Sudarshan K.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Inc 15.04.1996
ISSN:0021-8693, 1090-266X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We study groups of matricesSGLn(ZΓ) of augmentation one over the integral group ring ZΓ of a nilpotent group Γ. We relate the torsion ofSGLn(ZΓ) to the torsion of Γ. We prove that all abelianp-subgroups ofSGLn(ZΓ) can be stably diagonalized. Also, all finite subgroups ofSGLn(ZΓ) can be embedded into the diagonal Γn<SGLn(ZΓ). We apply matrix results to show that if Γ is nilpotent-by-(Π′-finite) then all finite Π-groups of normalized units in ZΓ can be embedded into Γ.
ISSN:0021-8693
1090-266X
DOI:10.1006/jabr.1996.0134