On the Complexity of the Preconditioned Conjugate Gradient Algorithm for Solving Toeplitz Systems with a Fisher--Hartwig Singularity
The Toeplitz matrix $T_n$ with generating function $f ( \omega ) = |1 - e ^{-i \omega}|^{-2d} h( \omega )$, where $d \in (-\frac{1}{2}, \frac{1}{2})\setminus \{0\}$ and $h(\omega)$ is positive, continuous on $[-\pi,\pi]$, and differentiable on $[-\pi,\pi]\setminus\{0\}$, has a Fisher--Hartwig singul...
Uloženo v:
| Vydáno v: | SIAM journal on matrix analysis and applications Ročník 27; číslo 3; s. 638 - 653 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Philadelphia, PA
Society for Industrial and Applied Mathematics
01.01.2005
|
| Témata: | |
| ISSN: | 0895-4798, 1095-7162 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The Toeplitz matrix $T_n$ with generating function $f ( \omega ) = |1 - e ^{-i \omega}|^{-2d} h( \omega )$, where $d \in (-\frac{1}{2}, \frac{1}{2})\setminus \{0\}$ and $h(\omega)$ is positive, continuous on $[-\pi,\pi]$, and differentiable on $[-\pi,\pi]\setminus\{0\}$, has a Fisher--Hartwig singularity [M. E. Fisher and R. E. Hartwig (1968), Adv. Chem. Phys., 32, pp. 190--225]. The complexity of the preconditioned conjugate gradient (PCG) algorithm is known [R. H. Chan and M. Ng (1996), SIAM Rev., 38, pp. 427--482] to be $O(n\log n)$ for Toeplitz systems when $d = 0$. However, the effect on the PCG algorithm of the Fisher--Hartwig singularity in $T_n$ has not been explored in the literature. We show that the complexity of the conjugate gradient (CG) algorithm for solving $T_n x=b$ without any preconditioning grows asymptotically as $n^{1+|d|}\log (n)$. With T. Chan's optimal circulant preconditioner $C_n$ [T. Chan (1988), SIAM J. Sci. Statist. Comput., 9, pp. 766--771], the complexity of the PCG algorithm is $O(n\log^3(n))$. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 |
| ISSN: | 0895-4798 1095-7162 |
| DOI: | 10.1137/040612117 |