Tracking the Unseen and Unaware: Deciphering Controllers' Detection Failures to Warnings Through Eye-Tracking Metrics

The integration of digital towers in air traffic control (ATC) intensifies visual complexity of controllers, increasing the risk of detection failure (DF) to warnings and compromising airspace safety. The inherent variability in human situational awareness and behaviors further complicates the diffe...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of human-computer interaction Ročník 41; číslo 19; s. 11895 - 11914
Hlavní autori: Li, Zhimin, Li, Fan, Lyu, Mengtao
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Norwood Taylor & Francis 02.10.2025
Lawrence Erlbaum Associates, Inc
Predmet:
ISSN:1044-7318, 1532-7590, 1044-7318
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The integration of digital towers in air traffic control (ATC) intensifies visual complexity of controllers, increasing the risk of detection failure (DF) to warnings and compromising airspace safety. The inherent variability in human situational awareness and behaviors further complicates the differentiation and recognition of various DFs. This study deciphers DF by categorizing it into types based on Endsley's situation awareness theory, identifying specific causes and key indicators. A four-phase framework-DF classification, DF induction experiment, gaze dynamics analytics, and DF-type recognition-was applied to gaze data from 26 subjects. Results revealed distinct gaze patterns for non-perception, unaware perception, and aware perception of warnings, with continuous warnings weakening operators' awareness but enhancing foresight of warning implications. A random forest model achieved 80% precision in DF-type recognition, offering empirical support for real-time DF recognition and targeted interventions to improve visual warning detection and human-computer interaction in aviation safety.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1044-7318
1532-7590
1044-7318
DOI:10.1080/10447318.2024.2448877