An SQP method for minimization of locally Lipschitz functions with nonlinear constraints
In this paper, we present a quadratic model for minimizing problems with nonconvex and nonsmooth objective and constraint functions. This method is based on sequential quadratic programming that uses an penalty function to equilibrate among the decrease of the objective function and the feasibility...
Gespeichert in:
| Veröffentlicht in: | Optimization Jg. 68; H. 4; S. 731 - 751 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Philadelphia
Taylor & Francis
03.04.2019
Taylor & Francis LLC |
| Schlagworte: | |
| ISSN: | 0233-1934, 1029-4945 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In this paper, we present a quadratic model for minimizing problems with nonconvex and nonsmooth objective and constraint functions. This method is based on sequential quadratic programming that uses an
penalty function to equilibrate among the decrease of the objective function and the feasibility of the constraints. To construct a quadratic subproblem, we linearize the objective and constraint functions with their ε-subdifferential approximations. These approximations are iteratively improved until an effective descent direction is found. Also, we prove that our method is globally convergent in the sense that, every accumulation point of the generated sequence is a Clark-stationary point for the penalty function. Finally, the presented algorithm is implemented in Matlab environment and compared with some recent methods. |
|---|---|
| AbstractList | In this paper, we present a quadratic model for minimizing problems with nonconvex and nonsmooth objective and constraint functions. This method is based on sequential quadratic programming that uses an
penalty function to equilibrate among the decrease of the objective function and the feasibility of the constraints. To construct a quadratic subproblem, we linearize the objective and constraint functions with their ε-subdifferential approximations. These approximations are iteratively improved until an effective descent direction is found. Also, we prove that our method is globally convergent in the sense that, every accumulation point of the generated sequence is a Clark-stationary point for the penalty function. Finally, the presented algorithm is implemented in Matlab environment and compared with some recent methods. In this paper, we present a quadratic model for minimizing problems with nonconvex and nonsmooth objective and constraint functions. This method is based on sequential quadratic programming that uses an [Formula omitted.] penalty function to equilibrate among the decrease of the objective function and the feasibility of the constraints. To construct a quadratic subproblem, we linearize the objective and constraint functions with their [epsilon]-subdifferential approximations. These approximations are iteratively improved until an effective descent direction is found. Also, we prove that our method is globally convergent in the sense that, every accumulation point of the generated sequence is a Clark-stationary point for the penalty function. Finally, the presented algorithm is implemented in Matlab environment and compared with some recent methods. |
| Author | Yousefpour, Rohollah Jafari, Elham |
| Author_xml | – sequence: 1 givenname: Rohollah surname: Yousefpour fullname: Yousefpour, Rohollah email: yousefpour@umz.ac.ir organization: Department of Mathematical Sciences, University of Mazandaran – sequence: 2 givenname: Elham surname: Jafari fullname: Jafari, Elham organization: Department of Mathematical Sciences, University of Mazandaran |
| BookMark | eNp9kE1LAzEQhoMo2FZ_ghDwvDXJJpvdm6X4BQUVe_AW0nzQlN2kJiml_fXu0nr1NDDzvDPDMwaXPngDwB1GU4xq9IBIWeKmpFOCcD3FjDJMygswwog0BW0ouwSjgSkG6BqMU9ogRHBF6Ah8zzz8-vyAncnroKENEXbOu84dZXbBw2BhG5Rs2wNcuG1Sa5eP0O68GqYJ7l1ew_6d1nkjI1R9L0fpfE434MrKNpnbc52A5fPTcv5aLN5f3uazRaFIXeWiqhVDhDWWGc0lqYykHEtaqabRimjDOa7ViluuUVVRY7BGitYrYrXljSrLCbg_rd3G8LMzKYtN2EXfXxSEIEo5QxT3FDtRKoaUorFiG10n40FgJAaH4s-hGByKs8M-93jKOd-b6eQ-xFaLLA9tiDZKr1wS5f8rfgGIwXsU |
| Cites_doi | 10.1080/10556788.2012.714781 10.1137/1.9781611971309 10.1007/s11075-015-0034-2 10.1137/140971580 10.1007/BF01198402 10.1142/1493 10.1007/BF00932858 10.1016/j.amc.2007.08.044 10.1007/BF00940684 10.1137/030601296 10.1007/BF01584320 10.1007/s10957-012-0024-7 10.1007/978-3-662-06409-2 10.1080/10556780701394169 10.1137/S1064827598334861 10.1137/090780201 10.1007/BF02591938 10.1007/s10107-010-0408-0 10.1007/s11075-016-0208-6 10.1017/S0962492900002518 10.1007/s11075-012-9692-5 10.1137/0802012 10.1080/10556788.2016.1208749 |
| ContentType | Journal Article |
| Copyright | 2018 Informa UK Limited, trading as Taylor & Francis Group 2018 2018 Informa UK Limited, trading as Taylor & Francis Group |
| Copyright_xml | – notice: 2018 Informa UK Limited, trading as Taylor & Francis Group 2018 – notice: 2018 Informa UK Limited, trading as Taylor & Francis Group |
| DBID | AAYXX CITATION 7SC 7TB 8FD FR3 H8D JQ2 L7M L~C L~D |
| DOI | 10.1080/02331934.2018.1545123 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1029-4945 |
| EndPage | 751 |
| ExternalDocumentID | 10_1080_02331934_2018_1545123 1545123 |
| Genre | Article |
| GroupedDBID | .7F .DC .QJ 0BK 0R~ 123 29N 30N 4.4 5VS AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AMVHM AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DKSSO DU5 EBS EJD E~A E~B GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEJ TFL TFT TFW TTHFI TUROJ TWF UT5 UU3 ZGOLN ~S~ AAYXX CITATION 7SC 7TB 8FD FR3 H8D JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c286t-68c50259f5ed7a26ea471a46c99dc2de7718cb7f7d0664ee1d0c48b2fdf79c33 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000463862400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0233-1934 |
| IngestDate | Wed Aug 13 02:40:42 EDT 2025 Sat Nov 29 06:01:40 EST 2025 Mon Oct 20 23:48:49 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c286t-68c50259f5ed7a26ea471a46c99dc2de7718cb7f7d0664ee1d0c48b2fdf79c33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2204475041 |
| PQPubID | 27961 |
| PageCount | 21 |
| ParticipantIDs | proquest_journals_2204475041 informaworld_taylorfrancis_310_1080_02331934_2018_1545123 crossref_primary_10_1080_02331934_2018_1545123 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-04-03 |
| PublicationDateYYYYMMDD | 2019-04-03 |
| PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-03 day: 03 |
| PublicationDecade | 2010 |
| PublicationPlace | Philadelphia |
| PublicationPlace_xml | – name: Philadelphia |
| PublicationTitle | Optimization |
| PublicationYear | 2019 |
| Publisher | Taylor & Francis Taylor & Francis LLC |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis LLC |
| References | CIT0010 CIT0012 CIT0011 Fletcher R. (CIT0027) 2013 CIT0014 CIT0013 CIT0016 CIT0015 CIT0018 CIT0017 CIT0019 CIT0021 CIT0001 CIT0022 Zhang J (CIT0007) 2003; 21 CIT0003 CIT0025 CIT0024 CIT0005 CIT0004 CIT0026 CIT0029 CIT0006 CIT0028 CIT0009 |
| References_xml | – ident: CIT0029 doi: 10.1080/10556788.2012.714781 – ident: CIT0018 doi: 10.1137/1.9781611971309 – ident: CIT0028 doi: 10.1007/s11075-015-0034-2 – ident: CIT0012 doi: 10.1137/140971580 – ident: CIT0005 doi: 10.1007/BF01198402 – ident: CIT0019 doi: 10.1142/1493 – volume-title: Practical methods of optimization year: 2013 ident: CIT0027 – ident: CIT0001 doi: 10.1007/BF00932858 – volume: 21 start-page: 247 issue: 2 year: 2003 ident: CIT0007 publication-title: J Comput Math – ident: CIT0014 doi: 10.1016/j.amc.2007.08.044 – ident: CIT0009 doi: 10.1007/BF00940684 – ident: CIT0011 doi: 10.1137/030601296 – ident: CIT0021 doi: 10.1007/BF01584320 – ident: CIT0026 doi: 10.1007/s10957-012-0024-7 – ident: CIT0022 doi: 10.1007/978-3-662-06409-2 – ident: CIT0017 doi: 10.1080/10556780701394169 – ident: CIT0006 doi: 10.1137/S1064827598334861 – ident: CIT0010 doi: 10.1137/090780201 – ident: CIT0024 doi: 10.1007/BF02591938 – ident: CIT0016 doi: 10.1007/s10107-010-0408-0 – ident: CIT0025 doi: 10.1007/s11075-016-0208-6 – ident: CIT0004 doi: 10.1017/S0962492900002518 – ident: CIT0013 doi: 10.1007/s11075-012-9692-5 – ident: CIT0003 doi: 10.1137/0802012 – ident: CIT0015 doi: 10.1080/10556788.2016.1208749 |
| SSID | ssj0021624 |
| Score | 2.1423128 |
| Snippet | In this paper, we present a quadratic model for minimizing problems with nonconvex and nonsmooth objective and constraint functions. This method is based on... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 731 |
| SubjectTerms | Algorithms Approximation nonlinear constraint Penalty function Quadratic programming Sequential quadratic model ε-subdifferential |
| Title | An SQP method for minimization of locally Lipschitz functions with nonlinear constraints |
| URI | https://www.tandfonline.com/doi/abs/10.1080/02331934.2018.1545123 https://www.proquest.com/docview/2204475041 |
| Volume | 68 |
| WOSCitedRecordID | wos000463862400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Online Journals customDbUrl: eissn: 1029-4945 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021624 issn: 0233-1934 databaseCode: TFW dateStart: 19850101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5SPOjBt1hf5OA1urvJZpNjEYuHUioW7W3ZzQMKWkt3FfTXm8lmpUXEgx73MNlhMpNvMkm-QegitYKyghni8EcRpnhBSpFJUprERCYuUubZ-R8G2XAoJhM5CrcJq3CtEvbQtiGK8Gs1BHdRVu2NuCsHM85xKFREYgGlEQdawPfpoB9Cc9x__Npyxdy3tQUJAiLtG56fRllBpxXu0m9rtQeg_vY_qL6DtkL2iXuNu-yiNTPbQ5tLnIT7aNKb4fu7EW5aS2OnGgb6kefwXhO_WOzx7-kdD6bzCo4hPjCgo3dgDHVdPGt0KxZYQfoJXSjq6gCN-zfj61sS2i8QlQheEy5U6jIiaVOjsyLhpnBAVjCupNQq0SZzsKbKzGbapS3MmFhHiokysdpmUlF6iDrud-YI4ZRbzh1GSiYNi1UshKWGcqslJIi67KLL1ur5vCHZyOOWuzRYLAeL5cFiXSSX5yavfXXDNq1IcvqL7Gk7kXmI1ypPkgiYDyMWH_9h6BO04T79YVNET1GnXryaM7Su3upptTj3nvkJA1rfsA |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS8MwEA46BfXB3-J0ah58rbZNmiaPQxwT51AcurfQpgkMdI61CvrXm0tb2RDxQZ_Lpcflku9yyX2H0GlkOKEJ1Z7FH-VRxRIv5bHwUh1qXwdJRB07_0Mv7vf5cChma2HgWSWcoU1JFOH2aljckIyun8SdW5yxnkMgJRJwyI1Y1CKLaCmyWAv8-YPO49ehK2CusS2IeCBTV_H8NMwcPs2xl37brR0EdTb-Q_lNtF4FoLhdeswWWtDjbbQ2Q0u4g4btMb6_u8Vld2lsdcPAQPJclWziF4MdBD69495oksNNxAcGgHQ-jCG1i8elcskUK4hAoRFFke-iQedycNH1qg4Mngo5KzzGVWSDImEincVJyHRisSyhTAmRqTDTsUU2lcYmzmzkQrUOMl9RnoYmM7FQhOyhhv2d3kc4YoYxC5OCCk0DFXBuiCbMZAJixCxtorPa7HJS8mzIoKYvrSwmwWKyslgTidnJkYVLcJiyG4kkv8i26pmU1ZLNZRj6QH7o0-DgD0OfoJXu4KYne1f960O0aj-5uyeftFCjmL7qI7Ss3opRPj12bvoJPMXj2g |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwEA86RfTBb3E6NQ--RtsmTZPHoQ7FMSYO3Vto8wEDnWOtgv71JmkrGyI-6HO59Lhc8rtcLr8D4DQ2DJOUaGTxRyIiaYoylnCU6UgHOkxj4tn5H7pJr8eGQ96vqgnzqqzSnaFNSRTh92q3uCfK1BVx5xZmrONglxEJmUuNWNDCi2DJhs7UOfmg8_h15gqp72vrRJCTqR_x_DTMHDzNkZd-26w9AnU2_kH3TbBehZ-wXfrLFljQ422wNkNKuAOG7TG8v-vDsrc0tKpBxz_yXD3YhC8GegB8eofd0SR39xAf0MGj92DoErtwXOqWTqF08adrQ1Hku2DQuRpcXKOq_wKSEaMFokzGNiTiJtYqSSOqU4tkKaGScyUjpROLazJLTKJs3EK0DlUgCcsio0zCJcZ7oGF_p_cBjKmh1IIkJ1yTUIaMGawxNYq7CFFlTXBWW11MSpYNEdbkpZXFhLOYqCzWBHx2bkTh0xum7EUi8C-yrXoiRbVgcxFFgaM-DEh48IehT8BK_7Ijuje920Owar_4i6cAt0CjmL7qI7As34pRPj32TvoJoK_ijA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+SQP+method+for+minimization+of+locally+Lipschitz+functions+with+nonlinear+constraints&rft.jtitle=Optimization&rft.au=Yousefpour%2C+Rohollah&rft.au=Jafari%2C+Elham&rft.date=2019-04-03&rft.issn=0233-1934&rft.eissn=1029-4945&rft.volume=68&rft.issue=4&rft.spage=731&rft.epage=751&rft_id=info:doi/10.1080%2F02331934.2018.1545123&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_02331934_2018_1545123 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0233-1934&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0233-1934&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0233-1934&client=summon |