An SQP method for minimization of locally Lipschitz functions with nonlinear constraints

In this paper, we present a quadratic model for minimizing problems with nonconvex and nonsmooth objective and constraint functions. This method is based on sequential quadratic programming that uses an penalty function to equilibrate among the decrease of the objective function and the feasibility...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Optimization Ročník 68; číslo 4; s. 731 - 751
Hlavní autori: Yousefpour, Rohollah, Jafari, Elham
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Philadelphia Taylor & Francis 03.04.2019
Taylor & Francis LLC
Predmet:
ISSN:0233-1934, 1029-4945
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this paper, we present a quadratic model for minimizing problems with nonconvex and nonsmooth objective and constraint functions. This method is based on sequential quadratic programming that uses an penalty function to equilibrate among the decrease of the objective function and the feasibility of the constraints. To construct a quadratic subproblem, we linearize the objective and constraint functions with their ε-subdifferential approximations. These approximations are iteratively improved until an effective descent direction is found. Also, we prove that our method is globally convergent in the sense that, every accumulation point of the generated sequence is a Clark-stationary point for the penalty function. Finally, the presented algorithm is implemented in Matlab environment and compared with some recent methods.
AbstractList In this paper, we present a quadratic model for minimizing problems with nonconvex and nonsmooth objective and constraint functions. This method is based on sequential quadratic programming that uses an penalty function to equilibrate among the decrease of the objective function and the feasibility of the constraints. To construct a quadratic subproblem, we linearize the objective and constraint functions with their ε-subdifferential approximations. These approximations are iteratively improved until an effective descent direction is found. Also, we prove that our method is globally convergent in the sense that, every accumulation point of the generated sequence is a Clark-stationary point for the penalty function. Finally, the presented algorithm is implemented in Matlab environment and compared with some recent methods.
In this paper, we present a quadratic model for minimizing problems with nonconvex and nonsmooth objective and constraint functions. This method is based on sequential quadratic programming that uses an [Formula omitted.] penalty function to equilibrate among the decrease of the objective function and the feasibility of the constraints. To construct a quadratic subproblem, we linearize the objective and constraint functions with their [epsilon]-subdifferential approximations. These approximations are iteratively improved until an effective descent direction is found. Also, we prove that our method is globally convergent in the sense that, every accumulation point of the generated sequence is a Clark-stationary point for the penalty function. Finally, the presented algorithm is implemented in Matlab environment and compared with some recent methods.
Author Yousefpour, Rohollah
Jafari, Elham
Author_xml – sequence: 1
  givenname: Rohollah
  surname: Yousefpour
  fullname: Yousefpour, Rohollah
  email: yousefpour@umz.ac.ir
  organization: Department of Mathematical Sciences, University of Mazandaran
– sequence: 2
  givenname: Elham
  surname: Jafari
  fullname: Jafari, Elham
  organization: Department of Mathematical Sciences, University of Mazandaran
BookMark eNp9kE1LAzEQhoMo2FZ_ghDwvDXJJpvdm6X4BQUVe_AW0nzQlN2kJiml_fXu0nr1NDDzvDPDMwaXPngDwB1GU4xq9IBIWeKmpFOCcD3FjDJMygswwog0BW0ouwSjgSkG6BqMU9ogRHBF6Ah8zzz8-vyAncnroKENEXbOu84dZXbBw2BhG5Rs2wNcuG1Sa5eP0O68GqYJ7l1ew_6d1nkjI1R9L0fpfE434MrKNpnbc52A5fPTcv5aLN5f3uazRaFIXeWiqhVDhDWWGc0lqYykHEtaqabRimjDOa7ViluuUVVRY7BGitYrYrXljSrLCbg_rd3G8LMzKYtN2EXfXxSEIEo5QxT3FDtRKoaUorFiG10n40FgJAaH4s-hGByKs8M-93jKOd-b6eQ-xFaLLA9tiDZKr1wS5f8rfgGIwXsU
Cites_doi 10.1080/10556788.2012.714781
10.1137/1.9781611971309
10.1007/s11075-015-0034-2
10.1137/140971580
10.1007/BF01198402
10.1142/1493
10.1007/BF00932858
10.1016/j.amc.2007.08.044
10.1007/BF00940684
10.1137/030601296
10.1007/BF01584320
10.1007/s10957-012-0024-7
10.1007/978-3-662-06409-2
10.1080/10556780701394169
10.1137/S1064827598334861
10.1137/090780201
10.1007/BF02591938
10.1007/s10107-010-0408-0
10.1007/s11075-016-0208-6
10.1017/S0962492900002518
10.1007/s11075-012-9692-5
10.1137/0802012
10.1080/10556788.2016.1208749
ContentType Journal Article
Copyright 2018 Informa UK Limited, trading as Taylor & Francis Group 2018
2018 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2018 Informa UK Limited, trading as Taylor & Francis Group 2018
– notice: 2018 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
H8D
JQ2
L7M
L~C
L~D
DOI 10.1080/02331934.2018.1545123
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1029-4945
EndPage 751
ExternalDocumentID 10_1080_02331934_2018_1545123
1545123
Genre Article
GroupedDBID .7F
.DC
.QJ
0BK
0R~
123
29N
30N
4.4
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMVHM
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DKSSO
DU5
EBS
EJD
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
AAYXX
CITATION
7SC
7TB
8FD
FR3
H8D
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c286t-68c50259f5ed7a26ea471a46c99dc2de7718cb7f7d0664ee1d0c48b2fdf79c33
IEDL.DBID TFW
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000463862400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0233-1934
IngestDate Wed Aug 13 02:40:42 EDT 2025
Sat Nov 29 06:01:40 EST 2025
Mon Oct 20 23:48:49 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c286t-68c50259f5ed7a26ea471a46c99dc2de7718cb7f7d0664ee1d0c48b2fdf79c33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2204475041
PQPubID 27961
PageCount 21
ParticipantIDs proquest_journals_2204475041
informaworld_taylorfrancis_310_1080_02331934_2018_1545123
crossref_primary_10_1080_02331934_2018_1545123
PublicationCentury 2000
PublicationDate 2019-04-03
PublicationDateYYYYMMDD 2019-04-03
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-03
  day: 03
PublicationDecade 2010
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Optimization
PublicationYear 2019
Publisher Taylor & Francis
Taylor & Francis LLC
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis LLC
References CIT0010
CIT0012
CIT0011
Fletcher R. (CIT0027) 2013
CIT0014
CIT0013
CIT0016
CIT0015
CIT0018
CIT0017
CIT0019
CIT0021
CIT0001
CIT0022
Zhang J (CIT0007) 2003; 21
CIT0003
CIT0025
CIT0024
CIT0005
CIT0004
CIT0026
CIT0029
CIT0006
CIT0028
CIT0009
References_xml – ident: CIT0029
  doi: 10.1080/10556788.2012.714781
– ident: CIT0018
  doi: 10.1137/1.9781611971309
– ident: CIT0028
  doi: 10.1007/s11075-015-0034-2
– ident: CIT0012
  doi: 10.1137/140971580
– ident: CIT0005
  doi: 10.1007/BF01198402
– ident: CIT0019
  doi: 10.1142/1493
– volume-title: Practical methods of optimization
  year: 2013
  ident: CIT0027
– ident: CIT0001
  doi: 10.1007/BF00932858
– volume: 21
  start-page: 247
  issue: 2
  year: 2003
  ident: CIT0007
  publication-title: J Comput Math
– ident: CIT0014
  doi: 10.1016/j.amc.2007.08.044
– ident: CIT0009
  doi: 10.1007/BF00940684
– ident: CIT0011
  doi: 10.1137/030601296
– ident: CIT0021
  doi: 10.1007/BF01584320
– ident: CIT0026
  doi: 10.1007/s10957-012-0024-7
– ident: CIT0022
  doi: 10.1007/978-3-662-06409-2
– ident: CIT0017
  doi: 10.1080/10556780701394169
– ident: CIT0006
  doi: 10.1137/S1064827598334861
– ident: CIT0010
  doi: 10.1137/090780201
– ident: CIT0024
  doi: 10.1007/BF02591938
– ident: CIT0016
  doi: 10.1007/s10107-010-0408-0
– ident: CIT0025
  doi: 10.1007/s11075-016-0208-6
– ident: CIT0004
  doi: 10.1017/S0962492900002518
– ident: CIT0013
  doi: 10.1007/s11075-012-9692-5
– ident: CIT0003
  doi: 10.1137/0802012
– ident: CIT0015
  doi: 10.1080/10556788.2016.1208749
SSID ssj0021624
Score 2.1423128
Snippet In this paper, we present a quadratic model for minimizing problems with nonconvex and nonsmooth objective and constraint functions. This method is based on...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Index Database
Publisher
StartPage 731
SubjectTerms Algorithms
Approximation
nonlinear constraint
Penalty function
Quadratic programming
Sequential quadratic model
ε-subdifferential
Title An SQP method for minimization of locally Lipschitz functions with nonlinear constraints
URI https://www.tandfonline.com/doi/abs/10.1080/02331934.2018.1545123
https://www.proquest.com/docview/2204475041
Volume 68
WOSCitedRecordID wos000463862400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor and Francis Online Journals
  customDbUrl:
  eissn: 1029-4945
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021624
  issn: 0233-1934
  databaseCode: TFW
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5SPOjBt1itkoPX1WR3u0mORSwepFQs2FvI5gEFrdJdBf31ZrJZaRHxoMc9JJmdzOSbTJJvEDqnlhlFjUqc5iTJRU6S0gqTkNQJnZaF4oaHYhNsNOLTqRjH24RVvFYJe2jXEEWEtRqcW5VVeyPu0sOMN5wMMiKUQ2rEgxbwfXroB9ecDB--tly0CGVtoUUCTdo3PD_1soJOK9yl39bqAEDD7X8QfQdtxegTDxpz2UVrdr6HNpc4CffRdDDH93dj3JSWxl40DPQjT_G9Jn52OODf4zu-nb1UcAzxgQEdgwFjyOvieSObWmAN4SdUoairAzQZXk-ubpJYfiHRKS_qpOC67yMi4frWMJUWVnkgU3mhhTA6NZZ5WNMlc8z4sCW3lhqic16mzjgmdJYdoo4fzh7Bu3DKecZZbonx4ZdThd_HaCX8v6uS90UXXbRaly8NyYakLXdp1JgEjcmosS4Sy3Mj65DdcE0pEpn90rbXTqSM_lrJNCXAfEhyevyHrk_Qhv8Mh00k66FOvXi1p2hdv9WzanEWLPMTy_TgQQ
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5aBfXgW6xWzcHr6mafybGIRbEWxQV7C9k8oKC1dFdBf72Z7K60iHjQ8zJJdjLJN5lkvkHolOhUCaKEZyT1vYhFvpdrpjw_MEwGeSKooq7YRDoY0OGQzebCwLNKOEObiijC7dWwuCEY3TyJO7c4Yy0nhJAIoRAbsagVLqKl2GIt8OdnvcevQxdJXGFbEPFApsni-amZOXyaYy_9tls7COpt_MfgN9F67YDibmUxW2hBj7fR2gwt4Q4adsf44f4OV9WlsR0bBgaS5zplE78Y7CDw6R33R5MCbiI-MACks2EMoV08rgYnpliCBwqFKMpiF2W9y-ziyqsrMHgyoEnpJVTG1iliJtYqFUGihcUyESWSMSUDpVOLbDJPTaqs5xJpTZQvI5oHRpmUyTDcQy3bnd6H1HBCaUjTSPvKemBGJPYoIwWz_y5yGrM2OmvUzicVzwYnDX1prTEOGuO1xtqIzU4OL12Aw1TVSHj4i2ynmUleL9mCB4EP5Id-RA7-0PQJWrnKbvu8fz24OUSr9pO7e_LDDmqV01d9hJblWzkqpsfOTD8BDfzkaw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwEA86RfTBb3F-5sHXapN2bfI41KE4xsSBewtpPmCgc6xV0L_eXNrKhogP-lySXC-X_O4uye8QOiMm1ZJoGVjFwiDmcRhkhusgpJYrmiWSaeaLTaS9HhsOeb-6TZhX1yohhrYlUYTfq2FxT7Stb8RdOJhxhhNBRoQwSI040IoW0ZJznRMw8kHn8SvmIomvawtNAmhTP-L5qZs5eJojL_22WXsE6mz8g-ybaL1yP3G7tJcttGDG22hthpRwBw3bY_xw38dlbWnsRMPAP_JcPdjELxZ7AHx6x93RJIdziA8M8OgtGENiF49L2eQUK_A_oQxFke-iQed6cHkTVPUXAkVZUgQJUy3nEnHbMjqVNDHSIZmME8W5VlSb1OGaylKbaue3xMYQHaqYZdRqm3IVRXuo4YYz-_AwnDAWsTQ2oXb-l5WJC2SU5O7fZcZavInOa62LScmyIUhNXlppTIDGRKWxJuKzcyMKn96wZS0SEf3S9qieSFEt2FxQGgL1YRiTgz90fYpW-lcd0b3t3R2iVffFHzyF0RFqFNNXc4yW1Vsxyqcn3kg_AXAp4x0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+SQP+method+for+minimization+of+locally+Lipschitz+functions+with+nonlinear+constraints&rft.jtitle=Optimization&rft.au=Yousefpour%2C+Rohollah&rft.au=Jafari%2C+Elham&rft.date=2019-04-03&rft.issn=0233-1934&rft.eissn=1029-4945&rft.volume=68&rft.issue=4&rft.spage=731&rft.epage=751&rft_id=info:doi/10.1080%2F02331934.2018.1545123&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_02331934_2018_1545123
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0233-1934&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0233-1934&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0233-1934&client=summon