Matrix Cartan Superdomains, Super Toeplitz-Operators, and Quantization

We present a general theory of non-perturbative quantization of a class of hermitian symmetric supermanifolds. The quantization scheme is based on the notion of a super Toeplitz operator on a suitable Z2-graded Hilbert spaces of super-holomorphic functions. The quantized supermanifold arises as the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of functional analysis Jg. 127; H. 2; S. 456 - 510
Hauptverfasser: Borthwick, D., Klimek, S., Lesniewski, A., Rinaldi, M.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 01.02.1995
ISSN:0022-1236, 1096-0783
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a general theory of non-perturbative quantization of a class of hermitian symmetric supermanifolds. The quantization scheme is based on the notion of a super Toeplitz operator on a suitable Z2-graded Hilbert spaces of super-holomorphic functions. The quantized supermanifold arises as the C*-algebra generated by all such operators. We prove that our quantization framework reproduces the invariant super Poisson structure on the classical supermanifold as Planck′s constant tends to zero.
ISSN:0022-1236
1096-0783
DOI:10.1006/jfan.1995.1020