Matrix Cartan Superdomains, Super Toeplitz-Operators, and Quantization
We present a general theory of non-perturbative quantization of a class of hermitian symmetric supermanifolds. The quantization scheme is based on the notion of a super Toeplitz operator on a suitable Z2-graded Hilbert spaces of super-holomorphic functions. The quantized supermanifold arises as the...
Uloženo v:
| Vydáno v: | Journal of functional analysis Ročník 127; číslo 2; s. 456 - 510 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
01.02.1995
|
| ISSN: | 0022-1236, 1096-0783 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We present a general theory of non-perturbative quantization of a class of hermitian symmetric supermanifolds. The quantization scheme is based on the notion of a super Toeplitz operator on a suitable Z2-graded Hilbert spaces of super-holomorphic functions. The quantized supermanifold arises as the C*-algebra generated by all such operators. We prove that our quantization framework reproduces the invariant super Poisson structure on the classical supermanifold as Planck′s constant tends to zero. |
|---|---|
| ISSN: | 0022-1236 1096-0783 |
| DOI: | 10.1006/jfan.1995.1020 |