Matrix Cartan Superdomains, Super Toeplitz-Operators, and Quantization

We present a general theory of non-perturbative quantization of a class of hermitian symmetric supermanifolds. The quantization scheme is based on the notion of a super Toeplitz operator on a suitable Z2-graded Hilbert spaces of super-holomorphic functions. The quantized supermanifold arises as the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of functional analysis Ročník 127; číslo 2; s. 456 - 510
Hlavní autoři: Borthwick, D., Klimek, S., Lesniewski, A., Rinaldi, M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.02.1995
ISSN:0022-1236, 1096-0783
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We present a general theory of non-perturbative quantization of a class of hermitian symmetric supermanifolds. The quantization scheme is based on the notion of a super Toeplitz operator on a suitable Z2-graded Hilbert spaces of super-holomorphic functions. The quantized supermanifold arises as the C*-algebra generated by all such operators. We prove that our quantization framework reproduces the invariant super Poisson structure on the classical supermanifold as Planck′s constant tends to zero.
ISSN:0022-1236
1096-0783
DOI:10.1006/jfan.1995.1020