A Supermodularity-Based Differential Privacy Preserving Algorithm for Data Anonymization
Maximizing data usage and minimizing privacy risk are two conflicting goals. Organizations always apply a set of transformations on their data before releasing it. While determining the best set of transformations has been the focus of extensive work in the database community, most of this work suff...
Uložené v:
| Vydané v: | IEEE transactions on knowledge and data engineering Ročník 26; číslo 7; s. 1591 - 1601 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.07.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1041-4347, 1558-2191 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Maximizing data usage and minimizing privacy risk are two conflicting goals. Organizations always apply a set of transformations on their data before releasing it. While determining the best set of transformations has been the focus of extensive work in the database community, most of this work suffered from one or both of the following major problems: scalability and privacy guarantee. Differential Privacy provides a theoretical formulation for privacy that ensures that the system essentially behaves the same way regardless of whether any individual is included in the database. In this paper, we address both scalability and privacy risk of data anonymization. We propose a scalable algorithm that meets differential privacy when applying a specific random sampling. The contribution of the paper is two-fold: 1) we propose a personalized anonymization technique based on an aggregate formulation and prove that it can be implemented in polynomial time; and 2) we show that combining the proposed aggregate formulation with specific sampling gives an anonymization algorithm that satisfies differential privacy. Our results rely heavily on exploring the supermodularity properties of the risk function, which allow us to employ techniques from convex optimization. Through experimental studies we compare our proposed algorithm with other anonymization schemes in terms of both time and privacy risk. |
|---|---|
| AbstractList | Maximizing data usage and minimizing privacy risk are two conflicting goals. Organizations always apply a set of transformations on their data before releasing it. While determining the best set of transformations has been the focus of extensive work in the database community, most of this work suffered from one or both of the following major problems: scalability and privacy guarantee. Differential Privacy provides a theoretical formulation for privacy that ensures that the system essentially behaves the same way regardless of whether any individual is included in the database. In this paper, we address both scalability and privacy risk of data anonymization. We propose a scalable algorithm that meets differential privacy when applying a specific random sampling. The contribution of the paper is two-fold: 1) we propose a personalized anonymization technique based on an aggregate formulation and prove that it can be implemented in polynomial time; and 2) we show that combining the proposed aggregate formulation with specific sampling gives an anonymization algorithm that satisfies differential privacy. Our results rely heavily on exploring the supermodularity properties of the risk function, which allow us to employ techniques from convex optimization. Through experimental studies we compare our proposed algorithm with other anonymization schemes in terms of both time and privacy risk. Maximizing data usage and minimizing privacy risk are two conflicting goals. Organizations always apply a set of transformations on their data before releasing it. While determining the best set of transformations has been the focus of extensive work in the database community, most of this work suffered from one or both of the following major problems: scalability and privacy guarantee. Differential Privacy provides a theoretical formulation for privacy that ensures that the system essentially behaves the same way regardless of whether any individual is included in the database. In this paper, we address both scalability and privacy risk of data anonymization. We propose a scalable algorithm that meets differential privacy when applying a specific random sampling. The contribution of the paper is two-fold: 1) we propose a personalized anonymization technique based on an aggregate formulation and prove that it can be implemented in polynomial time; and 2) we show that combining the proposed aggregate formulation with specific sampling gives an anonymization algorithm that satisfies differential privacy. Our results rely heavily on exploring the supermodularity properties of the risk function, which allow us to employ techniques from convex optimization. Through experimental studies we compare our proposed algorithm with other anonymization schemes in terms of both time and privacy risk. [PUBLICATION ABSTRACT] |
| Author | Elbassioni, Khaled Bertino, Elisa Fouad, Mohamed R. |
| Author_xml | – sequence: 1 givenname: Mohamed R. surname: Fouad fullname: Fouad, Mohamed R. email: mraouffouad@gmail.com organization: Purdue Univ., West Lafayette, IN, USA – sequence: 2 givenname: Khaled surname: Elbassioni fullname: Elbassioni, Khaled email: elbassio@mpi-inf.mpg.de organization: Max-Planck-Inst. fur Inf., Saarbrücken, Germany – sequence: 3 givenname: Elisa surname: Bertino fullname: Bertino, Elisa email: bertino@purdue.edu organization: Purdue Univ., West Lafayette, IN, USA |
| BookMark | eNp1kEtLw0AUhQepYFtdunITcJ06z0xmGdv6QEHBCu7CJDOpU5JMnUwK8dc7teJCcHUul-_cezgTMGptqwE4R3CGEBRXq4fFcoYhIjME-REYI8bSGCOBRmGGFMWUUH4CJl23gRCmPEVj8JZFL_1Wu8aqvpbO-CG-lp1W0cJUlXa69UbW0bMzO1kOQXWn3c606yir1zbg701UWRctpJdRFvIMjfmU3tj2FBxXsu702Y9OwevNcjW_ix-fbu_n2WNc4pT5WDNR4AIxQmEpS5EQxIUStEh4pVihOJY4pVwyyDnDqpJcEZUkVEJRlLjQBZmCy8PdrbMfve58vrG9a8PLHDEqGEUsIYEiB6p0tuucrvLS-O-c3klT5wjm-wrzfYX5vsKw4cEV_3FtnWmkG_7lLw680Vr_sgmHIkkh-QJeKX3h |
| CODEN | ITKEEH |
| CitedBy_id | crossref_primary_10_1007_s10586_017_1457_4 crossref_primary_10_3390_app8112081 crossref_primary_10_1145_3651168 crossref_primary_10_1093_comjnl_bxab025 crossref_primary_10_1109_ACCESS_2025_3546618 crossref_primary_10_3390_e25121613 crossref_primary_10_1016_j_cose_2022_103027 crossref_primary_10_11648_j_ijiis_20251403_11 crossref_primary_10_3390_e20050373 crossref_primary_10_1016_j_eswa_2014_08_037 crossref_primary_10_1109_JIOT_2021_3052978 crossref_primary_10_1007_s10586_018_2176_1 crossref_primary_10_1007_s10489_021_02611_z crossref_primary_10_1109_TBDATA_2017_2787661 crossref_primary_10_1016_j_jksuci_2016_06_001 crossref_primary_10_1515_popets_2018_0004 crossref_primary_10_1109_JIOT_2021_3057419 crossref_primary_10_3390_electronics12010070 crossref_primary_10_1007_s12065_019_00277_8 |
| Cites_doi | 10.1137/1.9780898718508 10.1007/11930242_19 10.1145/275487.275508 10.1109/ICDE.2005.42 10.1137/050622250 10.1016/j.datak.2007.06.011 10.1007/s00778-010-0191-9 10.1137/1.9781611973075.90 10.1145/170035.170072 10.1109/ICDE.2006.1 10.1214/aoap/1177004973 10.1145/103418.103439 10.1109/TDSC.2009.47 10.1007/978-3-642-78240-4 10.1145/2020408.2020487 10.1109/FOCS.2007.66 10.1145/1117454.1117464 10.1145/775047.775089 10.1007/978-3-540-85259-9_3 10.1109/ICDE.2005.143 10.1109/ICDE.2007.367856 10.1007/978-3-540-79228-4_1 10.1145/1142473.1142500 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2014 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2014 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TKDE.2013.107 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1558-2191 |
| EndPage | 1601 |
| ExternalDocumentID | 3387985991 10_1109_TKDE_2013_107 6709680 |
| Genre | orig-research |
| GroupedDBID | -~X .DC 0R~ 1OL 29I 4.4 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNI RNS RXW RZB TAE TAF TN5 UHB VH1 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c285t-e59b2b15340cac963179d94b67fd5bd72a2847a507752dfa7d3d664a09bc2beb3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 21 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000340205700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1041-4347 |
| IngestDate | Sun Nov 30 04:27:16 EST 2025 Sat Nov 29 04:46:36 EST 2025 Tue Nov 18 22:30:38 EST 2025 Wed Aug 27 02:52:15 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | Differential privacy risk management security data utility anonymity data sharing scalability |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c285t-e59b2b15340cac963179d94b67fd5bd72a2847a507752dfa7d3d664a09bc2beb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 1549541563 |
| PQPubID | 85438 |
| PageCount | 11 |
| ParticipantIDs | crossref_citationtrail_10_1109_TKDE_2013_107 proquest_journals_1549541563 ieee_primary_6709680 crossref_primary_10_1109_TKDE_2013_107 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-07-01 |
| PublicationDateYYYYMMDD | 2014-07-01 |
| PublicationDate_xml | – month: 07 year: 2014 text: 2014-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on knowledge and data engineering |
| PublicationTitleAbbrev | TKDE |
| PublicationYear | 2014 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref14 ref31 ref30 ghinita (ref15) 2007 ref32 ref10 ref2 ref17 ref19 ref18 grätzer (ref16) 2003 dwork (ref9) 2006 cao (ref5) 2011; 8 ref24 aggarwal (ref1) 2005 ref23 ref26 li (ref22) 2011 ref21 lovász (ref25) 2006 dwork (ref7) 2006 ref28 ref27 ref29 ref8 ref4 ref3 ref6 fouad (ref11) 2012 krause (ref20) 0 |
| References_xml | – year: 2012 ident: ref11 article-title: Towards a differentially private data anonymization – ident: ref29 doi: 10.1137/1.9780898718508 – ident: ref21 doi: 10.1007/11930242_19 – start-page: 758 year: 2007 ident: ref15 article-title: Fast data anonymization with low information loss publication-title: Proc Int Conf VLDB – year: 2003 ident: ref16 publication-title: General Lattice Theory – year: 2011 ident: ref22 article-title: Provably private data anonymization: Or, k-anonymity meets differential privacy publication-title: CoRR abs/1101 2604 – ident: ref30 doi: 10.1145/275487.275508 – ident: ref4 doi: 10.1109/ICDE.2005.42 – start-page: 1 year: 2006 ident: ref7 article-title: Differential privacy publication-title: Proc ICALP – ident: ref10 doi: 10.1137/050622250 – ident: ref24 doi: 10.1016/j.datak.2007.06.011 – ident: ref6 doi: 10.1007/s00778-010-0191-9 – start-page: 901 year: 2005 ident: ref1 article-title: On k-anonymity and the curse of dimensionality publication-title: Proc Int Conf VLDB – ident: ref18 doi: 10.1137/1.9781611973075.90 – ident: ref2 doi: 10.1145/170035.170072 – ident: ref26 doi: 10.1109/ICDE.2006.1 – ident: ref13 doi: 10.1214/aoap/1177004973 – ident: ref3 doi: 10.1145/103418.103439 – year: 0 ident: ref20 publication-title: UCI repository of machine learning databases – volume: 8 start-page: 337 year: 2011 ident: ref5 article-title: CASTLE: Continuously anonymizing data streams publication-title: IEEE Trans Depend Secure Comput doi: 10.1109/TDSC.2009.47 – ident: ref17 doi: 10.1007/978-3-642-78240-4 – ident: ref28 doi: 10.1145/2020408.2020487 – start-page: 486 year: 2006 ident: ref9 article-title: Our data, ourselves: Privacy via distributed noise generation publication-title: Proc 25th EUROCRYPT – ident: ref27 doi: 10.1109/FOCS.2007.66 – ident: ref31 doi: 10.1145/1117454.1117464 – ident: ref19 doi: 10.1145/775047.775089 – ident: ref12 doi: 10.1007/978-3-540-85259-9_3 – ident: ref14 doi: 10.1109/ICDE.2005.143 – ident: ref23 doi: 10.1109/ICDE.2007.367856 – ident: ref8 doi: 10.1007/978-3-540-79228-4_1 – start-page: 57 year: 2006 ident: ref25 article-title: Fast algorithms for log-concave functions: Sampling, rounding, integration and optimization publication-title: Proc Annu Symp FOCS – ident: ref32 doi: 10.1145/1142473.1142500 |
| SSID | ssj0008781 |
| Score | 2.224072 |
| Snippet | Maximizing data usage and minimizing privacy risk are two conflicting goals. Organizations always apply a set of transformations on their data before releasing... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1591 |
| SubjectTerms | Aggregates Algorithms and protection Communities Data Data privacy Data sharing Database design Database Management Information Storage and Retrieval Information Technology and Systems integrity Knowledge and data engineering tools and techniques modeling and management Online Information Services Privacy Scalability Security |
| Title | A Supermodularity-Based Differential Privacy Preserving Algorithm for Data Anonymization |
| URI | https://ieeexplore.ieee.org/document/6709680 https://www.proquest.com/docview/1549541563 |
| Volume | 26 |
| WOSCitedRecordID | wos000340205700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2191 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008781 issn: 1041-4347 databaseCode: RIE dateStart: 19890101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4g8aAHUdCIotmD8URl02677REFYmJCSMSEW7OvIgkCgULiv3e2LahRD96aZvpIv53XduYbgJskYIkIPOlQKZmDHjp0pKLcUa4OjKXc8nydDZvg_X44GkWDEjR3vTDGmKz4zNzZw-xfvp6rtd0qa1musSDEBH2P8yDv1dpZ3ZBnA0kxu8CcyGP8k0-zNXzqdG0Rl4epKv_mf7KBKj-scOZaepX_vdQxHBUhJGnnmJ9AycyqUNmOZyCFtlbh8AvXYA1GbfK8XqAdnmtbeYrBt3OPHkyTTjEiBVV9SgbLyUaod2IrM6wVmY1Jezqeo_jrG8H4lnREKki-Z1B0cJ7CS687fHh0irEKCEDop47xI-lKtHSMKqFQAVEndcRkwBPtS81dYV2W8C05nqsTwbWng4AJGknlSky-z6CMjzHnQDAcMdTFdWCSBCMbGkpBE8kjkVDhScbq0Nx-7FgVnON29MU0znIPGsUWm9hig2d4HW534oucbOMvwZoFYidUYFCHxhbJuFDFVWw56HybpnoXv191CQd4X5bX4DagnC7X5gr21SadrJbX2Sr7AJRe0ZA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5KFdSDb7FadQ_iydgl2WSTY7UtSmsRrNBb2FdqoVrpC_z3ziZpVNSDtxAmbMi389rMfANwngQsEYEnHSolc9BDh45UlDvK1YGxlFuer9NhE7zbDfv96KEEl0UvjDEmLT4zV_Yy_Zevx2puj8pqlmssCDFBX_EZc2nWrVXY3ZCnI0kxv8CsyGP8k1Gz1ms3mraMy8NklX_zQOlIlR92OHUura3_vdY2bOZBJKlnqO9AybzuwtZyQAPJ9XUXNr6wDe5Bv04e529oicfa1p5i-O1cow_TpJEPSUFlH5GHyXAh1DuxtRnWjrwOSH00GKP48wvBCJc0xEyQ7NQg7-Hch6dWs3dz6-SDFRCC0J85xo-kK9HWMaqEQhVErdQRkwFPtC81d4V1WsK39HiuTgTXng4CJmgklSsx_T6AMi5jDoFgQGKoizvBJAnGNjSUgiaSRyKhwpOMVeBy-bFjlbOO2-EXozjNPmgUW2xiiw3e4RW4KMTfMrqNvwT3LBCFUI5BBapLJONcGaexZaHzbaLqHf3-1Bms3fbuO3Hnrts-hnVcg2UVuVUozyZzcwKrajEbTien6Y77AKD71Nc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Supermodularity-Based+Differential+Privacy+Preserving+Algorithm+for+Data+Anonymization&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Fouad%2C+Mohamed+R&rft.au=Elbassioni%2C+Khaled&rft.au=Bertino%2C+Elisa&rft.date=2014-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1041-4347&rft.eissn=1558-2191&rft.volume=26&rft.issue=7&rft.spage=1591&rft_id=info:doi/10.1109%2FTKDE.2013.107&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3387985991 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon |