A Supermodularity-Based Differential Privacy Preserving Algorithm for Data Anonymization

Maximizing data usage and minimizing privacy risk are two conflicting goals. Organizations always apply a set of transformations on their data before releasing it. While determining the best set of transformations has been the focus of extensive work in the database community, most of this work suff...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on knowledge and data engineering Ročník 26; číslo 7; s. 1591 - 1601
Hlavní autoři: Fouad, Mohamed R., Elbassioni, Khaled, Bertino, Elisa
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.07.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1041-4347, 1558-2191
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Maximizing data usage and minimizing privacy risk are two conflicting goals. Organizations always apply a set of transformations on their data before releasing it. While determining the best set of transformations has been the focus of extensive work in the database community, most of this work suffered from one or both of the following major problems: scalability and privacy guarantee. Differential Privacy provides a theoretical formulation for privacy that ensures that the system essentially behaves the same way regardless of whether any individual is included in the database. In this paper, we address both scalability and privacy risk of data anonymization. We propose a scalable algorithm that meets differential privacy when applying a specific random sampling. The contribution of the paper is two-fold: 1) we propose a personalized anonymization technique based on an aggregate formulation and prove that it can be implemented in polynomial time; and 2) we show that combining the proposed aggregate formulation with specific sampling gives an anonymization algorithm that satisfies differential privacy. Our results rely heavily on exploring the supermodularity properties of the risk function, which allow us to employ techniques from convex optimization. Through experimental studies we compare our proposed algorithm with other anonymization schemes in terms of both time and privacy risk.
AbstractList Maximizing data usage and minimizing privacy risk are two conflicting goals. Organizations always apply a set of transformations on their data before releasing it. While determining the best set of transformations has been the focus of extensive work in the database community, most of this work suffered from one or both of the following major problems: scalability and privacy guarantee. Differential Privacy provides a theoretical formulation for privacy that ensures that the system essentially behaves the same way regardless of whether any individual is included in the database. In this paper, we address both scalability and privacy risk of data anonymization. We propose a scalable algorithm that meets differential privacy when applying a specific random sampling. The contribution of the paper is two-fold: 1) we propose a personalized anonymization technique based on an aggregate formulation and prove that it can be implemented in polynomial time; and 2) we show that combining the proposed aggregate formulation with specific sampling gives an anonymization algorithm that satisfies differential privacy. Our results rely heavily on exploring the supermodularity properties of the risk function, which allow us to employ techniques from convex optimization. Through experimental studies we compare our proposed algorithm with other anonymization schemes in terms of both time and privacy risk.
Maximizing data usage and minimizing privacy risk are two conflicting goals. Organizations always apply a set of transformations on their data before releasing it. While determining the best set of transformations has been the focus of extensive work in the database community, most of this work suffered from one or both of the following major problems: scalability and privacy guarantee. Differential Privacy provides a theoretical formulation for privacy that ensures that the system essentially behaves the same way regardless of whether any individual is included in the database. In this paper, we address both scalability and privacy risk of data anonymization. We propose a scalable algorithm that meets differential privacy when applying a specific random sampling. The contribution of the paper is two-fold: 1) we propose a personalized anonymization technique based on an aggregate formulation and prove that it can be implemented in polynomial time; and 2) we show that combining the proposed aggregate formulation with specific sampling gives an anonymization algorithm that satisfies differential privacy. Our results rely heavily on exploring the supermodularity properties of the risk function, which allow us to employ techniques from convex optimization. Through experimental studies we compare our proposed algorithm with other anonymization schemes in terms of both time and privacy risk. [PUBLICATION ABSTRACT]
Author Elbassioni, Khaled
Bertino, Elisa
Fouad, Mohamed R.
Author_xml – sequence: 1
  givenname: Mohamed R.
  surname: Fouad
  fullname: Fouad, Mohamed R.
  email: mraouffouad@gmail.com
  organization: Purdue Univ., West Lafayette, IN, USA
– sequence: 2
  givenname: Khaled
  surname: Elbassioni
  fullname: Elbassioni, Khaled
  email: elbassio@mpi-inf.mpg.de
  organization: Max-Planck-Inst. fur Inf., Saarbrücken, Germany
– sequence: 3
  givenname: Elisa
  surname: Bertino
  fullname: Bertino, Elisa
  email: bertino@purdue.edu
  organization: Purdue Univ., West Lafayette, IN, USA
BookMark eNp1kEtLw0AUhQepYFtdunITcJ06z0xmGdv6QEHBCu7CJDOpU5JMnUwK8dc7teJCcHUul-_cezgTMGptqwE4R3CGEBRXq4fFcoYhIjME-REYI8bSGCOBRmGGFMWUUH4CJl23gRCmPEVj8JZFL_1Wu8aqvpbO-CG-lp1W0cJUlXa69UbW0bMzO1kOQXWn3c606yir1zbg701UWRctpJdRFvIMjfmU3tj2FBxXsu702Y9OwevNcjW_ix-fbu_n2WNc4pT5WDNR4AIxQmEpS5EQxIUStEh4pVihOJY4pVwyyDnDqpJcEZUkVEJRlLjQBZmCy8PdrbMfve58vrG9a8PLHDEqGEUsIYEiB6p0tuucrvLS-O-c3klT5wjm-wrzfYX5vsKw4cEV_3FtnWmkG_7lLw680Vr_sgmHIkkh-QJeKX3h
CODEN ITKEEH
CitedBy_id crossref_primary_10_1007_s10586_017_1457_4
crossref_primary_10_3390_app8112081
crossref_primary_10_1145_3651168
crossref_primary_10_1093_comjnl_bxab025
crossref_primary_10_1109_ACCESS_2025_3546618
crossref_primary_10_3390_e25121613
crossref_primary_10_1016_j_cose_2022_103027
crossref_primary_10_11648_j_ijiis_20251403_11
crossref_primary_10_3390_e20050373
crossref_primary_10_1016_j_eswa_2014_08_037
crossref_primary_10_1109_JIOT_2021_3052978
crossref_primary_10_1007_s10586_018_2176_1
crossref_primary_10_1007_s10489_021_02611_z
crossref_primary_10_1109_TBDATA_2017_2787661
crossref_primary_10_1016_j_jksuci_2016_06_001
crossref_primary_10_1515_popets_2018_0004
crossref_primary_10_1109_JIOT_2021_3057419
crossref_primary_10_3390_electronics12010070
crossref_primary_10_1007_s12065_019_00277_8
Cites_doi 10.1137/1.9780898718508
10.1007/11930242_19
10.1145/275487.275508
10.1109/ICDE.2005.42
10.1137/050622250
10.1016/j.datak.2007.06.011
10.1007/s00778-010-0191-9
10.1137/1.9781611973075.90
10.1145/170035.170072
10.1109/ICDE.2006.1
10.1214/aoap/1177004973
10.1145/103418.103439
10.1109/TDSC.2009.47
10.1007/978-3-642-78240-4
10.1145/2020408.2020487
10.1109/FOCS.2007.66
10.1145/1117454.1117464
10.1145/775047.775089
10.1007/978-3-540-85259-9_3
10.1109/ICDE.2005.143
10.1109/ICDE.2007.367856
10.1007/978-3-540-79228-4_1
10.1145/1142473.1142500
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2014
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2014
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TKDE.2013.107
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore Digital Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2191
EndPage 1601
ExternalDocumentID 3387985991
10_1109_TKDE_2013_107
6709680
Genre orig-research
GroupedDBID -~X
.DC
0R~
1OL
29I
4.4
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TAF
TN5
UHB
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c285t-e59b2b15340cac963179d94b67fd5bd72a2847a507752dfa7d3d664a09bc2beb3
IEDL.DBID RIE
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000340205700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1041-4347
IngestDate Sun Nov 30 04:27:16 EST 2025
Sat Nov 29 04:46:36 EST 2025
Tue Nov 18 22:30:38 EST 2025
Wed Aug 27 02:52:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Differential privacy
risk management
security
data utility
anonymity
data sharing
scalability
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c285t-e59b2b15340cac963179d94b67fd5bd72a2847a507752dfa7d3d664a09bc2beb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1549541563
PQPubID 85438
PageCount 11
ParticipantIDs crossref_citationtrail_10_1109_TKDE_2013_107
proquest_journals_1549541563
ieee_primary_6709680
crossref_primary_10_1109_TKDE_2013_107
PublicationCentury 2000
PublicationDate 2014-07-01
PublicationDateYYYYMMDD 2014-07-01
PublicationDate_xml – month: 07
  year: 2014
  text: 2014-07-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on knowledge and data engineering
PublicationTitleAbbrev TKDE
PublicationYear 2014
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref14
ref31
ref30
ghinita (ref15) 2007
ref32
ref10
ref2
ref17
ref19
ref18
grätzer (ref16) 2003
dwork (ref9) 2006
cao (ref5) 2011; 8
ref24
aggarwal (ref1) 2005
ref23
ref26
li (ref22) 2011
ref21
lovász (ref25) 2006
dwork (ref7) 2006
ref28
ref27
ref29
ref8
ref4
ref3
ref6
fouad (ref11) 2012
krause (ref20) 0
References_xml – year: 2012
  ident: ref11
  article-title: Towards a differentially private data anonymization
– ident: ref29
  doi: 10.1137/1.9780898718508
– ident: ref21
  doi: 10.1007/11930242_19
– start-page: 758
  year: 2007
  ident: ref15
  article-title: Fast data anonymization with low information loss
  publication-title: Proc Int Conf VLDB
– year: 2003
  ident: ref16
  publication-title: General Lattice Theory
– year: 2011
  ident: ref22
  article-title: Provably private data anonymization: Or, k-anonymity meets differential privacy
  publication-title: CoRR abs/1101 2604
– ident: ref30
  doi: 10.1145/275487.275508
– ident: ref4
  doi: 10.1109/ICDE.2005.42
– start-page: 1
  year: 2006
  ident: ref7
  article-title: Differential privacy
  publication-title: Proc ICALP
– ident: ref10
  doi: 10.1137/050622250
– ident: ref24
  doi: 10.1016/j.datak.2007.06.011
– ident: ref6
  doi: 10.1007/s00778-010-0191-9
– start-page: 901
  year: 2005
  ident: ref1
  article-title: On k-anonymity and the curse of dimensionality
  publication-title: Proc Int Conf VLDB
– ident: ref18
  doi: 10.1137/1.9781611973075.90
– ident: ref2
  doi: 10.1145/170035.170072
– ident: ref26
  doi: 10.1109/ICDE.2006.1
– ident: ref13
  doi: 10.1214/aoap/1177004973
– ident: ref3
  doi: 10.1145/103418.103439
– year: 0
  ident: ref20
  publication-title: UCI repository of machine learning databases
– volume: 8
  start-page: 337
  year: 2011
  ident: ref5
  article-title: CASTLE: Continuously anonymizing data streams
  publication-title: IEEE Trans Depend Secure Comput
  doi: 10.1109/TDSC.2009.47
– ident: ref17
  doi: 10.1007/978-3-642-78240-4
– ident: ref28
  doi: 10.1145/2020408.2020487
– start-page: 486
  year: 2006
  ident: ref9
  article-title: Our data, ourselves: Privacy via distributed noise generation
  publication-title: Proc 25th EUROCRYPT
– ident: ref27
  doi: 10.1109/FOCS.2007.66
– ident: ref31
  doi: 10.1145/1117454.1117464
– ident: ref19
  doi: 10.1145/775047.775089
– ident: ref12
  doi: 10.1007/978-3-540-85259-9_3
– ident: ref14
  doi: 10.1109/ICDE.2005.143
– ident: ref23
  doi: 10.1109/ICDE.2007.367856
– ident: ref8
  doi: 10.1007/978-3-540-79228-4_1
– start-page: 57
  year: 2006
  ident: ref25
  article-title: Fast algorithms for log-concave functions: Sampling, rounding, integration and optimization
  publication-title: Proc Annu Symp FOCS
– ident: ref32
  doi: 10.1145/1142473.1142500
SSID ssj0008781
Score 2.224072
Snippet Maximizing data usage and minimizing privacy risk are two conflicting goals. Organizations always apply a set of transformations on their data before releasing...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1591
SubjectTerms Aggregates
Algorithms
and protection
Communities
Data
Data privacy
Data sharing
Database design
Database Management
Information Storage and Retrieval
Information Technology and Systems
integrity
Knowledge and data engineering tools and techniques
modeling and management
Online Information Services
Privacy
Scalability
Security
Title A Supermodularity-Based Differential Privacy Preserving Algorithm for Data Anonymization
URI https://ieeexplore.ieee.org/document/6709680
https://www.proquest.com/docview/1549541563
Volume 26
WOSCitedRecordID wos000340205700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2191
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008781
  issn: 1041-4347
  databaseCode: RIE
  dateStart: 19890101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5q8aAHq1axWmUP4qnRmmyy2WO1iqCUggq9hX1FC7UtfYH_3pkkrYp68FbCJCn5Mo9vM_sNwKmyXEisPL0U85vHY5l6UnPhpdapwIUmFjpD-kF0OnGvJ7slaKz2wjjnsuYzd04_s2_5dmTmtFR2QVpjUYwEfU2IKN-rtYq6scgGkiK7QE4UcPGpp3nxdN--oSauAKmq-JZ_soEqP6JwllpuK__7U9uwVZSQrJVjvgMlN9yFynI8Ayu8dRc2v2gNVqHXYo_zMcbhkaXOUyy-vSvMYJa1ixEp6OoD1p30F8q8M-rMoCgyfGGtwcsIzV_fGNa3rK1miuVrBsUOzj14vr15ur7zirEKnvHjcOa5UGpfY6TjTaMMOiD6pJVcRyK1obbCV5SyVEjieL5NlbCBjSKumlIbXyP53ocy3sYdACOZ8lTZmBZOuJ8KpYxOI6mcCHWsLlUNGsuHnZhCc5xGXwySjHs0ZULYJIQNHhE1OFuZj3Oxjb8MqwTEyqjAoAb1JZJJ4YrThDToQqKpweHvZx3BBl6X5z24dSjPJnN3DOtmMetPJyfZW_YB4c7Rsg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5EBfXgW6zPPYgnozXZZHeP1SqKtQhW6C3sKypUK7UV_PfObNOqqAdvIUzYkC_z3NlvAPa040Jh5BkV6N8iLlURKcNFVDivE59aKUxAuiGaTdluq5sJOBifhfHeh-Yzf0iXYS_fde2ASmVHxDWWSUzQp1LO4-rwtNbY7koRRpJifoFZUcLFJ6PmUeuqfkZtXAkmq-KbBwojVX7Y4eBczhf-91qLMF8Gkaw2RH0JJvzzMiyMBjSwUl-XYe4L2-AKtGvsdvCClrjrqPcUw-_oBH2YY_VySAoqe4fd9B7ftH1n1JtBduT5ntU6910Uf3hiGOGyuu5rNqwalGc4V-Hu_Kx1ehGVgxUiG8u0H_lUmdigreNVqy2qIGqlU9xkonCpcSLW5LR0SvR4sSu0cInLMq6rytjYYPq9BpO4jF8HRkTlhXaSSic8LoTW1hSZ0l6kRupjXYGD0cfObck6TsMvOnnIPqoqJ2xywgbviArsj8VfhnQbfwmuEBBjoRKDCmyNkMxLZXzNiYUupUQ12fj9qV2YuWhdN_LGZfNqE2ZxDR6qLHILJvu9gd-GafvWf3zt7YQ_7gPwStT6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Supermodularity-Based+Differential+Privacy+Preserving+Algorithm+for+Data+Anonymization&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Fouad%2C+Mohamed+R.&rft.au=Elbassioni%2C+Khaled&rft.au=Bertino%2C+Elisa&rft.date=2014-07-01&rft.pub=IEEE&rft.issn=1041-4347&rft.volume=26&rft.issue=7&rft.spage=1591&rft.epage=1601&rft_id=info:doi/10.1109%2FTKDE.2013.107&rft.externalDocID=6709680
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon