On polynomial-time approximation algorithms for the variable length scheduling problem

This paper may be viewed as a corrigendum as well as an extension of the paper by (Czumaj et al., Theoret. Comput. Sci. 262 (1–2), (2001) 569–582) where they deal with the variable length scheduling problem (VLSP) with parameters k 1, k 2, denoted VLSP( k 1, k 2). In the current paper, we first disc...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Theoretical computer science Ročník 302; číslo 1; s. 489 - 495
Hlavní autori: Czumaj, Artur, Ga̧sieniec, Leszek, Gaur, Daya Ram, Krishnamurti, Ramesh, Rytter, Wojciech, Zito, Michele
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Amsterdam Elsevier B.V 13.06.2003
Elsevier
Predmet:
ISSN:0304-3975, 1879-2294
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper may be viewed as a corrigendum as well as an extension of the paper by (Czumaj et al., Theoret. Comput. Sci. 262 (1–2), (2001) 569–582) where they deal with the variable length scheduling problem (VLSP) with parameters k 1, k 2, denoted VLSP( k 1, k 2). In the current paper, we first discuss an error in the analysis of one of the approximation algorithms described in (Czumaj et al., Theoret. Comput. Sci. 262 (1–2), (2001) 569–582), where an approximation algorithm for VLSP( k 1, k 2), k 1< k 2, was presented and it was claimed that the algorithm achieves the approximation ratio of 1+( k 1( k 2− k 1))/ k 2. In this paper we give a problem instance for which the same algorithm obtains the approximation ratio ≈ k 2 k 1 . We then present two simple approximation algorithms, one for the case k 1 = 1 with an approximation ratio of 2, and one for the case k 1>1 with an approximation ratio of 2+( k 2/2 k 1). This corrects the result claimed in (Czumaj et al., Theoret. Comput. Sci. 262 (1–2), (2001) 569–582).
ISSN:0304-3975
1879-2294
DOI:10.1016/S0304-3975(03)00141-5