A sequential design for estimating a nonlinear parametric function

A fully-sequential design for estimating a nonlinear function of the parameters in the simple linear regression model is proposed and its asymptotic behavior is investigated both theoretically and by simulation. The design requires that the observations be taken at x=±1 and specifies whether the nex...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied mathematics and computation Ročník 138; číslo 1; s. 113 - 120
Hlavní autori: Rekab, Kamel, Tahir, Mohamed
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York, NY Elsevier Inc 01.06.2003
Elsevier
Predmet:
ISSN:0096-3003, 1873-5649
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:A fully-sequential design for estimating a nonlinear function of the parameters in the simple linear regression model is proposed and its asymptotic behavior is investigated both theoretically and by simulation. The design requires that the observations be taken at x=±1 and specifies whether the next observation is to be taken at x=−1 or 1. It is shown that, under this design, the mean number of observations taken at x=1, m k , converges with probability one to an optimal value as k→∞, where k denotes the total number of design points. The simulation study indicates that m k converges in L 2 to the optimal value with the order of O( k −2).
ISSN:0096-3003
1873-5649
DOI:10.1016/S0096-3003(02)00113-3