A sequential design for estimating a nonlinear parametric function

A fully-sequential design for estimating a nonlinear function of the parameters in the simple linear regression model is proposed and its asymptotic behavior is investigated both theoretically and by simulation. The design requires that the observations be taken at x=±1 and specifies whether the nex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation Jg. 138; H. 1; S. 113 - 120
Hauptverfasser: Rekab, Kamel, Tahir, Mohamed
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York, NY Elsevier Inc 01.06.2003
Elsevier
Schlagworte:
ISSN:0096-3003, 1873-5649
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A fully-sequential design for estimating a nonlinear function of the parameters in the simple linear regression model is proposed and its asymptotic behavior is investigated both theoretically and by simulation. The design requires that the observations be taken at x=±1 and specifies whether the next observation is to be taken at x=−1 or 1. It is shown that, under this design, the mean number of observations taken at x=1, m k , converges with probability one to an optimal value as k→∞, where k denotes the total number of design points. The simulation study indicates that m k converges in L 2 to the optimal value with the order of O( k −2).
ISSN:0096-3003
1873-5649
DOI:10.1016/S0096-3003(02)00113-3